• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 174
 
Full Screen

  • Title
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • Preface
  • List of Publications
  • 1. Brief review of the earlier work on Sulphide and Phthalocyanine thin films
  • 1.1. Introduction
  • Table 1.1.1. Comparison of the electrical properties of the inorganic semiconductor germanium and organic semiconductor copper phthalocyanine
  • 1.2 Metallic Sulphide Thin Films
  • 1.3 Structure of Metallic Sulphides
  • Fig. 1.3.1 Wurtzite (ZnS) structure
  • Fig. 1.3.2 Sphalerite (ZnS) structure
  • Fig. 1.3.3 Halite (NaCI) structure
  • 1.4 Organic Semiconductors
  • 1.5 Molecular Structure of Phthalocyanines
  • Fig. 1.5.1 Basic structural unit of a metal substituted phthalocyanine molecuIe
  • Fig. 1.5.2 Normal projection of two molecules of the metal substituted phthalocyanine
  • 1.6 Multilayer Thin Films
  • References
  • 2. Methods and apparatus used in the present study
  • 2.1 Introduction
  • 2.2 Chemical Bath Deposition Technique
  • Reaction mechanism for the deposition of CdS films
  • Use of the precipitate as a precursor for other coating techniques
  • (1) Screen printing technique
  • (2) Use in the production of composite coatings
  • (3) Use of the precipitate as the source for vapour phase deposition
  • Chemically deposited semiconductor thin films for solar energy related applications
  • (1) Application in solar control coatings
  • (2) Application as solar absorber coatings
  • (3) Photodetector and photovoltaic applications
  • Toxieity considerations
  • 2.3 Thermal Evaporation Technique
  • 2.4 Production of Vacuum
  • 2.5 Vacuum Coating Unit
  • Fig. 2.5.1 Schematic diagram of a vacuum coating unit
  • Fig. 2.5.2 Schematic representation of Pirani gauge
  • Fig. 2.5.3 Schematic representation of Penning gauge
  • Plate 2.5.4 Photograph of the coating unit along with the accessories
  • 2.6 Substrate Cleaning
  • 2.7 Thickness Measurement
  • 2.8 Tolanskys Multiple Beam Interference Method
  • Fig. 2.8.1 Schematic representation of the multiple beam interference technique
  • 2.9 Sample Annealing
  • Fig. 2.9.1 Block diagram of the temperature controller cum recorder
  • Fig. 2.9.2 Photograph of the annealing furnace and controller cum recorder set up
  • 2.10 Electrical Conductivity Measurements
  • Fig. 2.10.1 Schematic diagram of the cross section of the conductivity cell
  • 2.11 Keithley Programmable Electrometer
  • Fig. 2.11.1 Schematic diagram of electrical conductivity measurement (all dimensions are in rnrn)
  • Fig. 2.11.2 Photograph of the electrical conductivity experimental set up
  • 2.12 Optical Measurements Using UV-Visible Spectrophotometer
  • Fig. 2.12.1 Block diagram of the optical system of the spectrophotorneter (Shimadzu 160A)
  • Fig. 2.12.2. Photograph of the Shimadzu 160A spectrophotometer
  • 2.13 Structural Studies Using X-ray Diffractometer
  • Fig. 2.13.1 Block diagram of XD PW 3710 BASED diffractometer
  • References
  • 3. Preparation of single and multi layer thin films of CuS, PbS, CdS and CuPc
  • 3.1 Introduction
  • 3.2 CuS Single Layer Films by CBD Technique
  • 3.3 PbS Single Layer Films by CBD Technique
  • 3.4 CdS Single Layer Films by CBD Technique
  • 3.5 PbS-CuS Multi Layer Films by CBD Technique
  • 3.6 CuPc Single Layer Films by Vacuum Deposition Technique
  • 3.7 CuPC Multilayer Films by Vacuum Deposition Technique
  • References
  • 4. Electrical conductivity studies in single and multilayer thin films of CuS, PbS, CdS and CuPc
  • 4.1 Introduction
  • 4.2 Theory
  • 4.3 Experiment
  • 4.4 Results and Discussion
  • 4.4.1 CuPc films
  • Table 4.4.1. Variation of activation energy with annealing temperature for CuPc thin film of thickness 2180 A
  • Table 4.4.1. Variation of activation energy with annealing tempera turc forCuPc thin film of thickness 2180 A
  • Fig. 4.4.1 Plot of Ln (o) Vs 1000/T for CuPc thin films of thickness 2180 A
  • 4.4.2 CuS films
  • 4.4.3 Multilayer CuS-CuPc films 4.4.4 PbS films
  • 4.4.4. PbS films
  • 4.4.5 Multilayer PbS-CuPc films 4.4.6 CdS films
  • 4.4.6 CdS films
  • 4.4.7 Multilayer CdS-CuPc films 4.4.8 Multilayer PbS-CuS films
  • 4.4.8 Multilayer PbS-CUS films
  • 4.5Conclusion
  • References
  • 5 OPTICAL ABSORPTION STUDIES IN SINGLE AND MULTILAYER THIN FILMS OF CuS, PbS, CdS and CuPc
  • 5.1 Introduction
  • 5.2 Theory
  • 5.3 Experiment
  • 5.4 Results and Discussion
  • 5.4.1 CuPc films
  • 5.4.2 CuS films
  • 5.4.3 Multilayer CuS-CuPc films 5.4.4 PbS films
  • 5.4.4 PbS films
  • 5.4.5 Multilayer PbS-CuPc films 5.4.6 CdS films
  • 5.4.6 CdS films
  • 5.4.7 Multilayer CdS-CuPc films 5.4.8 Multilayer PbS-CuS films
  • 5.4.8. Mul tilayer PbS-CuS films
  • 5.5 Conclusion
  • References
  • 6 STRUCTURAL STUDIES IN SINGLE AND MULTILAYER THIN FILMS OF CuS, PbS, CdS and CuPc
  • 6.1 Introduction
  • 6.2 Theory
  • 6.3 Experiment
  • 6.4 Results and Discussion 6.4.1 CuPc films
  • 6.4.1 CuPc films
  • 6.4.2 CuS films
  • 6.4.3 Multilayer CuS-CuPc films
  • 6.4.4 PbS films
  • 6.4.5 Multilayer PbS-CuPc films
  • 6.4.6 CdS films
  • 6.4.7 Multilayer CdS-CuPc films
  • 6.4.8 Mul tilayer PbS-CuS films
  • 6.5 Conclusion
  • References
  • 7 SUMMARY AND CONCLUSION