• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 263
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • Preface
  • 1. AN INTRODUCTION TO ATMOSPHERIC AEROSOL SYSTEM
  • 1.1 Introduction
  • 1.2 Sources of Aerosols
  • 1.3 Aerosol Production Mechanisms
  • 1.3.1 Bulk-to-Particle Conversion
  • 1.3.2 Gas-to-Particle Conversion
  • 1.4 Aerosol Removal Mechanisms
  • 1.4.1 Coagulation
  • 1.4.2 Dry deposition
  • 1.4.3 Wet Removal
  • 1.5 Aerosol Transport Mechanisms
  • 1.6 Residence Time of Atmospheric Aerosols
  • Table (1.1) Residence Time of Atmospheric Aerosol Particles
  • 1.7 Aerosol Continuity Equation
  • 1.8 Aerosol Size Distributions
  • 1.9 Chemical Composition of Aerosols
  • 1.10 Optical Effects of Aerosols
  • 1.11 Aerosol Optical Parameters
  • 1.11.1 Aerosol Scattering and Extinction Coefficients
  • 1.11.2 Aerosol Scattering Phase Function
  • 1.11.3 Single Scattering Albedo and Asymmetry Factor
  • 1.11.4 Upscatter Fraction
  • 1.11.5 Optical Depth
  • 1.12 Experiment Techniques for Aerosol Measurements
  • 1.12.1 Aerosol Remote Sensing Techniques
  • 1.12.1.1 Passive Remote Sensing
  • 1.12.1.2 Active Remote Sensing
  • 1.12.2 Aerosol In situ Measurements
  • 1.13 Analytical Techniques for Aerosol Particle Speciation
  • 1.14 A Brief Survey of Aerosol Size Distribution and Altitude Structure Studies in the Boundary Layer
  • 2. EXPERIMENT SET UP, DATA AND METHOD OF ANALYSIS
  • 2.1 introduction
  • 2.2 Location of the Experiment Site
  • 2.3 Andersen Low Pressure Impactor
  • 2.3.1 Instrument Description and Assembly
  • Fig. (2.1) Schematic diagram of Andersen Low Pressure Impactor
  • 2.3.2 Impactor Operation
  • Fig. (2.2) Flow calibration curve of Andersen Low Pressure Impactor
  • 2.3.3 Theory of Impaction
  • Fig. (2.3) Schematic of impactor stage.
  • 2.4 The Bistatic Continuous Wave Lidar
  • Table (2.2) Transmitting and Receiving System Parameters
  • 2.4.1 The Transmitting System
  • 2.4.1.1 Beam Alignment System
  • Plate I - Laser source and the transmitting optics (inside laboratory)
  • Plate II - Laser beam into the atmosphere (during lidar operation)
  • Fig. (2.4) Schematic of mirror system used for beam alignment.
  • 2.4.2 The Receiving System
  • 2.4.2.1 The Receiving Telescope
  • Fig. (2.5) Schematic diagram of receiving telescope
  • PlateIII Receiving Telescope
  • 2.4.2.2 The Photomultiplier and Dynode Circuit
  • 2.4.2.2.1 Current to Voltage Converter
  • Fig. (2.9) Current-to-voltage converter and low pass filter
  • 2.4.2.3 Control and Data Acquisition System
  • 2.4.2.3.1 Programmable Gain Instrumentation Amplifier
  • 2.4.2.3.2 Gain Control and Data Acquisition Unit
  • Plate-1V Data Acquisition System
  • 2.4.2.3.3 Data Acquisition Software
  • 2.5 Operation of Bistatic Lidar System
  • 2.6 Lidar Geometry
  • 2.7 The Lidar Equation
  • 2.7.1 Calculation of Scattering Volume
  • 2.7.2 Altitude of the Scattering Volume and Altitude Resolution
  • 2.8 Differential Angular Scattering Coefficients of Molecules and Aerosols
  • 2.9 Atmospheric Transmittance and Optical Depth
  • 3. SURFACE AEROSOL CHARACTERISTICS USING LOW PRESSURE IMPACTOR
  • 3.1 Introduction
  • 3.2 Estimation of Impactor Cut Points
  • 3.3 Effect of Relative Humidity on Aerosol Size and Density
  • 3.4 Estimation of Stokes Radius and Aerosol Size Distributions and Correction for Relative Humidity
  • 3.5 Mass and Number Distributions of Near Surface Aerosols
  • 3.6 Analytical Model of Aerosol Size Distributions
  • 3.7 Characteristics of Aerosol Size Distributions
  • 3.8 Seasonal Mean Size Distributions
  • 3.9 Seasonal Variation of Aerosol Mass Concentration
  • 3.10 Principal Components
  • 3.11 Summary
  • 4. ALTITUDE STRUCTURE OF AEROSOL NUMBER DENSITY AND ITS ASSOCIATION WITH BOUNDARY LAYER METEOROLOGICAL FEATURES
  • 4.1 Introduction
  • 4.2 Meteorological Conditions at the Experiment Site
  • 4.3 Estimation of Aerosol Number Density from Lidar Data
  • 4.3.1 Estimation of Lidar System Constant
  • 4.3.2 Standard Error of Aerosol Number Density
  • 4.4 Altitude Profiles of Aerosol Number Density
  • 4.4.1 Monthly Mean Profiles of Aerosol Number Density
  • 4.4.2 Seasonal Mean Profiles of Aerosol Number Density
  • 4.4.3 Annual Mean Profiles of Aerosol Number Density
  • 4.5 Aerosol Mixing Height and ABL Structure
  • 4.5.1 influence of ABL Meteorological Features on the Altitude Structure of Aerosol Number Density
  • 4.5.2 Estimation of Aerosol Mixing Height from Aerosol Number Density Profile
  • 4.5.3 Aerosol Mixing Height and its Association with Vertical Mixing
  • 4.5.4 Relative Contribution of Well-mixed Region to Mixing Region Aerosols
  • 4.5.5 Ventilation Coefficient
  • 4.6 Wind Speed Dependence of Aerosol Number Density in ABL
  • 4.7 Seasonal Variation of Background and Wind Dependant Components
  • 4.8 Summary
  • 5. ANALYTICAL MODEL FOR THE ALTITUDE VARIATION OF AEROSOL NUMBER DENSITY IN THE MIXING REGION
  • 5.1. Introduction
  • 5.2 Analytical Model for Aerosol Number Density
  • 5.3 Estimation of Model Parameters
  • 5.4 Development of Analytical Model
  • 5.5 Source Strength and its Variation
  • 5.6 Summary
  • 6. SEASONAL VARIATION AND LONG TERM TRENDS
  • 6.1 Introduction
  • 6.2 Aerosol Extinction Near the Surface
  • 6.3 Mixing Region Aerosol Optical Depth from CW Lidar
  • 6.4 Columnar Aerosol Optical Depth from Solar Radiometer
  • 6.5 Seasonal and Annual Variations at Different Altitude Regions
  • 6.6 Contribution of Mixing Region to Columnar aerosol Optical Depth
  • 6.7 Long Term Trends
  • 6.8 Summary
  • 7. SUMMARY
  • List of Publications
  • References