• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 388
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE 1
  • CERTIFICATE-2
  • DECLARATION
  • ACKNOWLEDGEMENT
  • LIST OF ABBREVIATIONS
  • Preface
  • TABLE OF CONTENTS
  • SECTION I
  • 1 Introduction
  • 1.1 Composites
  • 1.2 Fibres, Matrices and Composites
  • 1.2.1 Advanced fibres
  • 1.2.2 Glass fibres
  • 1.2.3 Carbon and graphite fibres
  • 1.2.4 Aramid fibres
  • 1.2.5 Boron fibres
  • 1.2.6 Other high performance fibres
  • 1.3 Plant Fibres
  • 1.3.1 Chemical structure and applications
  • 1.4 Cellulose Micro Fibrils
  • 1.5 Physical Structure of Plant Fibres
  • 1.5.1 Fibrillar structure
  • 1.5.2 Cell wall structure of native cellulose
  • 1.6 Determination of Degree of Crystallinity
  • 1.7 Microfibril Angle Measurements
  • 1.8 Thermal Stability of Natural Fibres
  • 1.9 Matrix Materials
  • 1.9.1 Polymers
  • a) Thermosetting and thermoplastic polymers
  • b) Polyester resin
  • c) Epoxy resin
  • 1.10 Interface Modification
  • Fig. 1.10 SEM of the 10% alkali treated coir fibres, wlth a magnification of 500
  • Fig. 1.11 SEM of the 8.56% MMA grafted coir fibres (X500)
  • Fig. 1.15. a. The surface of the untreated fibres covered by unevenly distributedorganic material b. Surface of treated fibres
  • Fig. 1.19 The ESCA deconvolution spectra of the CIS signal for thesuccinylated fibres
  • 1.10.1 Interfacial characterisation
  • 1.10.2 Interphase thickness and properties
  • 1.11 Fabrication of Composites
  • 1.11.1 Hand lay up
  • 1.11.2 Bag moulding process
  • 1.11.3 Filament winding
  • 1.11.4 Pultrusion
  • 1.11.5 Preformed moulding compounds
  • 1.11.6 Dough moulding compounds
  • 1.11.7.Sheet moulding compounds
  • 1.11.8 Prepregs
  • 1.11.9 Resin tranfer moulding
  • 1.11.10 Newer developments using thermosets
  • 1.12 Short Fibre Reinforced Thermosets
  • 1.13 Hybrid Composites
  • 1.13.1 Components of hybrid composite materials
  • 1.13.2 Role of interface in production of hybrid composite materials
  • 1.13.3 Calculation and design of hybrid composite materials
  • 1.14 Natural Fibre Reinforced Polyester Composites
  • 1.15 Textile Composites
  • Fig. 1.24 Various perform architectures
  • Fig. 1.25 The schematic representation of the type of defects that can occurin a textile composite
  • Fig. 1.26 Unit cell of a 2D knitted fabric
  • 1.16 Nanocomposites
  • 1.17 Green Composites
  • 1.18 Purpose and Importance of the Work
  • 1.18.1 Importance of banana fibre
  • 1.18.2 Scope of the present work
  • 1.19 Major Objectives
  • 1.19.1. Chemical modification of the banana fibre surface for improved interactionwith the polymer matrix
  • 1.19.2. Characterisation of the modified fibre surface by techniques like zetapotential, solvatochromism and spectroscopic methods
  • 1.19.3. Optimisation of the bananalglass fibre ratio and the layering pattern in thepreparation of hybrid composites
  • 1.19.4. Design of textile composites from banana fibre and glass fibre
  • 1.19.5. Macroscale examination of the composites to evaluate the fibrelmatrixinteractions
  • 1.19.6. Analysis of the dynamic mechanical properties of the composites
  • 1.19.7. Stress relaxation behaviour of the composites
  • 1.19.8. Water absorption behaviour of the composites
  • References
  • 2 Experimental
  • 2.1 Materials Used
  • 2.2 Chemical Modification of the Fibre Surface
  • 2.2.1 Silane treatment for cellulose fibres
  • 2.2.2 Treatment with C-18 T
  • 2.2.3 Treatment with NaOH
  • 2.3 Solvatochromic Measurements
  • 2.4 Zeta Potential Measurements
  • 2.5 Spectroscopic Methods
  • 2.6 Scanning Electron Microscopy Studies
  • 2.7 Optical Microscopy
  • 2.8 Preparation of Composites
  • 2.9 Mechanical Property Measurements
  • 2.10 Dynamic Mechanical Analysis
  • 2.11 Stress Relaxation Experiments
  • 2.12 Water Absorption Measurements
  • References
  • SECTION II
  • PART-1 FIBRE SURFACE CHARACTERISATION
  • 1 Determination of Polarity Parameters of Chemically Modified Banana Fibres by Means of the Solvatochromic Technique
  • 1.1.1 Introduction
  • 1.1.2 Experimental
  • 1.1.2a Solvents used for solvatochromic measurements
  • 1.1.2b Solvatochromic probe dyes
  • 1.1.2c.Solvatochromic measurements
  • 1.1.2d Calculation of the polarity parameters
  • 1.1.3 Results and Discussion
  • References
  • 2 Influence of Chemical Treatments on the Electro-kinetic Properties, IR Spectra and Morphology of Cellulose Fibres
  • 1.2.1 Introduction
  • 1.2.2 Experimental
  • 1.2.2a. Zeta -potential measurements
  • Fig. l.2.1 Special fibre cell used for the investigation
  • 1.2.2b. Surface morphology
  • 1.2.3 Results and Discussion
  • 1.2.3.a. Untreated fibres
  • Fig. 1.2.4 SEM micrograph of raw fibre
  • 1.2.3.b. Treated fibres
  • 1.2.3b1. Alkali treatment
  • Fig. 1.2.8 SEM micrograph of alkali treated fibre
  • 1.2.3b2. C18-T (2, CDichloro 6-n-octa-decyloxy-s-triazine) treatment
  • 1.2.3c. Acetylation
  • 1.2.3d Silane treatment
  • 1.2.3e. Silane A15land A174
  • I.2.3.f. Silane F8261 (IH, IH, 2H, 2H-Perfluorooctyl triethoxy silane)
  • 1.2.3g. Silane A1 100
  • 1.2.3h. Silane Si 69
  • References
  • PART-2 SHORT BANANA FIBRE REINFORCEDPOLYESTER COMPOSITES
  • 1 Mechanical and Dynamic Mechanical Analysis of Short Banana Fibre Reinforced Polyester Composites
  • 2.1.1 Introduction
  • 2.1.2 Results and Discussion
  • 2.1.2a. Mechanical properties
  • 2.1.2b. Dynamic mechanical properties
  • Fig. 2.1.3a, b, c SEM of the tensile failure surface banana /polyester compositewith fibre volume percent 10, 20 8 40
  • Fig. 2.1.6 Schematic diagram of fibre, matrix and the immobilised polymer layer
  • References
  • 2 Effect of Fibre Surface Treatments on the Mechanical. Properties of Short Banana Fibre Reinforced Polyester Compounds
  • 2.2.1 Introduction
  • 2.2.2 Results and Discussion
  • 2.2.2a. Sodium hydroxide treatment
  • FIGURES 2.2.3 a & b Tensile fracture surface of the alkali treated fibre composites
  • 2.2.2b. Silane treatment
  • 2.2.2b1. Silane A151 (Vinyl triethoxy silane)
  • Fig. 2.2.7a SEM of silane A151 treated fibre
  • Fig. 2.2.7b SEM of the tensile failure surface of the A151 treated composite
  • 2.2.2b2. Silane A174 (y-MethacryloxypropyItrimethoxysilane)
  • Fig. 2.2.8a SEM photographs of the silane A174 treated fibre
  • Fig. 2.2.8b SEM photographs of the tensile failure surface of the silane A174treated fibre composites
  • 2.2.2b3. Silane F 8261 (1H, lH, 2H, 2H-Perfluorooctyl triethoxy silane)
  • 2.2.2b4. Silane All00 (-y-Aminopropyltriethoxysilane)
  • 2.2.2b5. Silane Si 69 bis (triethoxysilyl propyl) tetra sulphide
  • 2.2.2.b6. Acetylation
  • Fig. 2.2.10 a SEM of the impact fracture surface of the acetylated fibre composite
  • Fig. 2.2.10b SEM of the of the acetylated fibre
  • 2.2.2.b7. Assessment of the effectiveness of different treatments
  • References
  • 3 Dynamic Mechanical Analysis of Chemically Modified Short Banana Fibre Reinforced Polyester Composites
  • 2.3.1 Introduction
  • 2.3.2 Results and Discussions
  • 2.3.2a. Storage modulus
  • 2.3.2b. Loss modulus
  • 2.3.2c. Damping curves
  • References
  • 4 Effect of Chemical Modification on the Water Absorption Behaviour of Banana Fibre Reinforced Polyester Composites
  • 2.4.1 Introduction
  • 2.4.2 Results and Discussion
  • Fig. 2.4.3 SEM of the tensile failed composite showing the porous nature of the fibre
  • References
  • 5 Stress Relaxation Behaviour of Short Banana Fibre Reinforced Polyester Composites
  • 2.5.1 Introduction
  • 2.5.2. Results and Discussion
  • 2.5.2a. Effect of fibre loading
  • 2.5.2b. Effect of fibre treatment
  • References
  • PART-3 HYBRID COMPOSITES OF SHORT BANANAFIBRE AND GLASS FIBRE
  • 1 Hybrid Composites of Short Banana Fibre and Glass Fibre: Mechanical Properties Stress Relaxation and Water Absorption Behaviour
  • 3.1.1 Introduction
  • 3.1.2 Results and Discussion
  • 3.1.2a. Tensile stress-strain behaviour
  • Fig. 3.1.5 a, b, c Optical photographs of the failed samples with glass volumefraction 0.1 I
  • Fig. 3.1.6 a, b, c SEM photographs of the composites with glass volumefraction 0.03, 0.11 and 0.15
  • 3.1.2b. Effect of banana glass layering on the tensile strength
  • 3.1.2c. Impact strength of banana-glass hybrid composites
  • 3.1.2d. Effect of glass-banana layering on the impact strength
  • 3.1.2e. Theoretical modelling
  • 3.1.3. Effect of Hybridisation on Stress Relaxation
  • 3.1.4. Water Absorption Behaviour of the Hybrid Composites
  • References
  • 2 Dynamic Mechanical Analysis of Banana / Glass Hybrid Fibre Reinforced Polyester Composites
  • 3.2.1 Introduction
  • 3.2.2 Results and Discussion
  • 3.2.2a. Storage modulus
  • Fig. 3.2.2 Optical photograph of the failed composite with glass as the core material (sample A)
  • 3.2.2b. Loss modulus
  • 3.2.2c. Damping coefficient
  • 3.2.2d. Effect of layering pattern
  • 3.2.2e. Damping coefficient
  • References
  • PART-4 BANANA/GLASS WOVEN TEXTILE COMPOSITES
  • 1 Static and Dynamic Mechanical Properties of Banana / Glass Hybrid Fibre Textile Composites
  • 4.1.1 Introduction
  • 4.1.2 Results and Discussion
  • 4.1.2a. Static mechanical properties
  • 4.1.2b. Tensile Properties
  • 4.1.2b1. Effect of fibre volume fraction
  • Fig. 4.1.3 Weaving architecture
  • Fig. 4.1.4 a, b, c Optical photographs of tensile fracture surfaces ofcomposites with two, three and four layers
  • Fig. 4.1.6 a, b, c Optical photographs of the layering patterns of the compositesin the direction of the weft yarns
  • 4.1.2b2. Effect of bundle width (weaving architecture)
  • 4.1.2b3. Effect of layering pattern
  • 4.1.3. Impact Properties
  • 4.1.3a. Effect of fibre volume fraction
  • Fig. 4.1.8 a, b, c Impact fracture pattern in a four layer composite
  • 4.1.3b. Effect of layering pattern
  • 4.1.4. Flexural Properties
  • 4.1.5. Dynamic Mechanical Properties
  • References
  • SECTION III
  • CONCLUSION
  • Future Work
  • APPENDIX I
  • Papers published /communicated in International Journals
  • APPENDIX II
  • Curriculum Vitae
  • Determination of Polarity Parameters of Chemically Modified Cellulose Fibers by Means of theSolvato chromic Technique
  • Short Banana Fiber Reinforced PolyesterComposites: Mechanical, Failureand Aging Characteristics
  • Polyester composites of short banana fibre and glass fibres.The tensile and impact properties1)
  • Influence of chemical treatments on the electrokinetic properties of cellulose fibres