• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 149
 
Full Screen

  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • ABBREVIATIONS AND ACRONYMS
  • CONTENTS
  • 1. Introduction and Objectives
  • 1.1 Objectives of the thesis
  • 1.2 Organization of the thesis
  • 2. Solid Phase Peptide Synthesis
  • 2.1 Principle and strategy of solid phase peptide synthesis
  • 2.2 Polymer supports and resin linkages
  • 2.2.a Styrene based polymers
  • Fig.11.1. Hypothetical models of polystyrene-bound peptides in (A) non polar solvent, (B) polar solvent, (C) inter molecularassociation, and (D) ideal situation.
  • Fig.11.2 Dimethyl acrylamide (2) Ethylene bis acrylamide (3) Acryloylsacrosine methyl ester (4) Polyacrylamide support
  • Fig.11.3 General scheme of oligoethyleneglycol diacrylate crosslinked polystyrenes.
  • Fig.11.4 HDODA - crosslinked polystyrene
  • 2.2.b The resin linkages
  • 2.2.c Photolytically detachable anchoring groups
  • 2.3 Effects of solvents in solid phase peptide synthesis
  • 2.4 Novel protecting groups
  • 2.5 Coupling reagents
  • Fig.II.5. 1, Hydroxy -7 - azobenzotriazole (HOAt)
  • Fig.II.6. Benzotriazyloxy - bis (pyrrolidine) carbonium hexaflourophosphate (BBC)
  • Fig.II.7. 1- (β-napthalenes sulfonyloxy) -benzotriazole (NSBT)
  • Fig.II.8.2- (1-HB, enzotriazol-1-yl) 1, 1, 3, 3 -tetramethyl uronium hexaflourophosphate (HBTU)
  • Fig.II.9.2- (1-H Benzotriazol-1-yl) 1, 1, 3, 3-tetramethyl uronium tetraflouroborate (TBTU)
  • Fig.II.10. (1-H, Benzotriazo1) -1-yloxy tris (dimethylamino) phosphonium hexafluorophosphate (BOP)
  • Fig.II.11. 1H- (1, 2, 3-benzotriazol-1-gloxy) -tris (pyrrolidino) phosphonium hexafluorophosphate (PyBOP)
  • Fig.II.12. Bromo-tris- (pyrrolidino-) phosphoniumhexafluorophosphate (PyBrop)
  • 2.6 Final cleavage
  • 2.7 Purification and characterization of peptides
  • 2.8 Problems associated with solid phase peptide synthesis
  • 3. Results and Discussion
  • 3.1 Preparation of polymer supports and functionalization
  • 3.1.a Preparation of 2% 1, 6-hexanediol diacrylate (HDODA) -crosslinked polystyrene
  • 3.1.b Functionalization of the polymer
  • 3.1.c Functional group assay
  • 3.2 Synthesis of peptides
  • 3.2.a Synthesis of model peptides
  • i. Ala-Pro-Ala
  • ii. Ala-Ala-Pro-Ala
  • iii. Ala-Ala-Ala-Ala-Ala
  • iv. Ala-Ala-Pro
  • v. Ala-Ala-Ala-Pro-Ala
  • vi. AIa-Pro-Gly-Pro-Arg
  • 3.2.b Synthesis of short fragments of rubber elongation factor (REF) protein
  • i. Gln-GIn-Gly-Gln-Gly (7-11)
  • ii. Val- Gln-Asp-Ala-Ala-Thr-Tyr-Ala (20- 27)
  • iii. Pro-Leu-Gln-Pro-Gly-Val-Asp-lle-Ile Glu-Gly-Pro (44-55)
  • iv Val-Lys-Asn-Val-Ala-Val-Pro (56-62)
  • v. Tyr- Ile-Pro-Asn-Gly-Ala- Leu-Lys-Phe-Val Asp-Ser-Thr-Val-Val-Ala (69-84)
  • vi Gln-Thr-Lys- Ile- Leu-Al a-Lys-Val-Phe Tyr-Gly (125-135)
  • 4. Experimental
  • 4.1 Preparation and functionalization of hexanediol diacrylate-crosslinked polystyrene
  • 4.1.a Materials and methods
  • 4.1.b Source of Chemicals
  • 4.1.c Preparation of 2% HDODA-crosslinked polystyrene by suspension polymerization
  • 4.1.d Chloromethylation of HDODA-crosslinked polystyrene: General procedure
  • i. Preparation of chloromethyl methyl ether
  • ii. Preparation of 1M anhydrous ZnCl2 in THF
  • iii Estimation of chlorine capacity by pyridine fusion method: General procedue
  • 4.2 Solid phase peptide synthesis
  • 4.2.a Source of chemicals
  • 4.2.b Purification of solvents and reagents
  • 4.2.c Preparation of reagents and amino acid derivtives
  • i. Preparation of Boc-azide from t-butyl carbazate
  • ii. Synthesis of Boc-amino acids - Schanabels method General procedure
  • iii Boc-ON method: General procedure
  • 4.2.d Purity of Boc-amino acids
  • 4.2.e Preparation of 1-Hydroxybenzotriazole (HOBt)
  • 4.2.f Solid phase synthesis: General procedure
  • 4.2.g Attachment of first amino acid to the resin
  • i. Cesium salt method: General procedure
  • ii. Estimation of first amino acid substitution: General procedure
  • 4.2.h Deprotection of t-Boc group: General procedure
  • 4.2.i Methods for activation and coupling
  • i. Anhydride method
  • ii. HOBt-active ester method
  • 4.2.j Cleavage of peptide from the resin by TFA / Thioanisole method
  • 4.2.k Purification and analysis
  • i. Purification by TLC
  • ii. High performance liquid chromatography
  • iii. Amino acid analysis
  • iv Mass spectroscopy
  • 4.2.l Synthesis of Model Peptides
  • i. Synthesis of Ala - Pro - Ala
  • ii Synthesis of Ala-Ala-Pro-Ala
  • iii Synthesis of AIa - Ala - Ala - Ala -Ala
  • iv. Synthesis of Ala-Ala -Pro
  • v. Synthesis of Ala-Ala-Ala-Pro-Ala
  • vi Ala-Pro-Gly-Pro-Arg
  • 4.2.m Synthesis of short fragments of rubber elongation factor (REF) protein
  • i Synthesis of Gln - Gln-Gly -Gln-Gly (7-11)
  • ii. Synthesis of Val-Gln-Asp-Ala-Ala-Thr-Tyr-Ala (20-27)
  • iii Synthesis of Pro-Leu-Gln-Pro-Gly-Val-Asp-lle-lle-Glu-Gly-Pro (44-55)
  • iv.Synthesis of Val-Lys-Asn-Val-Ala-Val-Pro (56-62)
  • v. Synthesis of Tyr-lle-Pro-Asn-Gly-Ala-Leu-Lys-Phe-Val-Asp-Ser-Thr-Val- Val-Ala (69-84)
  • vi Synthesis of Gln-Thr-Lys-lle-Leu-Ala-Lys-Val-Phe-Tyr (125-135)
  • 5. Summary and Outlook
  • References