• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 343
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE 1
  • CERTIFICATE-2
  • DECLARATION
  • ACKNOWLEDGEMENT
  • GLOSSARY OF TERMS
  • CONTENTS
  • 1. INTRODUCTION
  • 1.1. Introduction
  • Fig 1.1 Cumulative plastics growth by market (Source: Ref. IJ
  • 1.2. Classification of composites
  • 1.2.1 Particulate composites
  • 1.2.2 Fibre reinforced composites
  • 1.2.3 Laminated composites
  • 1.2.4 Hybrid composites
  • Fig. 1.4. Idealised stress-strain characteristics of sandwich hybrid (Source: Ref. 11)
  • 1.3. Fibres
  • 1.3.1 Man-made fibres
  • 1.3.1.1 Regenerated fibres
  • 1.3.1.2 Synthetic fibres
  • Scheme 1.2. Classification of fibres
  • 1.3.2 Natural fibres
  • 1.3.2.1 Mineral fibres
  • 1.3.2.2 Animal fibres
  • 1.3.2.3 Plant fibres
  • Fig. 7.5. Cross-section of sisal fibre showing the distribution of cells of different sizesand shapes with thick cell wall,
  • 1.4. Matrices
  • Fig. 1.6. Cumulative domestic thermoset growth (Source: Ref. l)
  • Fig. 1.7. Cumulative domestic thermoplastic growth (Source: Ref. 1)
  • 1.5. Interface
  • 1.6. Fabrication techniques
  • Scheme 1.3. Different moulding techniques
  • 1.7. Factors influencing the composite properties
  • 1.7.1 Strength, modulus and chemical stability of the fibre and the polymer matrix
  • 1.7.2 Influence of fibre orientation and volume fraction
  • Fig. 1.6 Schematic represenbtions of (a) continuous and aligned and (b) discontinuousand randomly oriented fibre-reinforced composites.
  • 1.7.3 Influence of fibre length
  • Fig. 1.11. Diagrams of tensile stress applied to discontinuous fibres of different lengths.
  • Fig. 1.12. Diagrams of (a) tensile stress (a) applied to fibre of length (I) and (b) shearstress (r) applied at the interface.
  • 1.7.4 Influence of voids
  • 1.7.5 Coupling agents
  • 1.8. Interface modification
  • 1.8.1 Surface modification of polymers
  • 1.8.2 Surface modification of fibres
  • 1.9. Characterisation of interface
  • 1.10. Natural fibre reinforced polymer composites and their applications
  • Fig. 7.13. Possibilities of use for natural fibres in automobiles
  • 1.11. Hybrid composites of natural fibres with synthetic fibres
  • 1.12. Scope and objectives of the work
  • 1.13. References
  • 2. MATERIALS AND EXPERIMENTAL TECHNIQUES
  • 2.1. Materials
  • 2.1.1 Sisal fibre
  • Table 2.1. Physical characteristics and mechanical properlies of sisal fibre.
  • Table 2.2. Chemical constituents of sisal fibre.
  • 2.1.2 Glass fibre
  • 2.1.3 Polyethylene
  • 2.1.4 Chemicals
  • 2.2. Chemical modifications
  • 2.2.1 Sodium hydroxide treatment
  • 2.2.2 Acetylation (using acetic anhydride)
  • 2.2.3 Permanganate (KMnO4) treatment
  • 2.2.4 Stearic acid treatment
  • 2.2.5 Peroxide treatment
  • 2.2.6 Silane (A 174) treatment
  • 2.2.7 Maleic anhydride modification
  • 2.3. Characterisation
  • 2.3.1 IR spectroscopy
  • 2.3.2 Scanning electron microscopy
  • 2.3.3 Optical microscopy
  • 2.4. Preparation of composites
  • Fig. 2.1 Schematic process diagram of steps involved in compression mouldingof oriented composites: (a) leaky mould, (b) extrudates with orientedfibres, (c) exbudatas in the mould, (d) application of pressure and (e) release of product.
  • 2.5. Characterisation of composite properties
  • 2.5.1 Mechanical properties
  • 2.5.2 Rheological measurements
  • 2.5.3 Thermogravimetric analysis
  • 2.5.4 Dynamic mechanical analysis
  • 2.5.5 Thermal conductivity analysis
  • Fig. 23. (a) Block diagram of the experimental TPS set-up at low temperature, where DVM is a digital voltmeter and GPlB is a general purpose interfacebus, (b) vertical section through the cryostat, (c) sample holder and (d) shape of the sample.
  • Fig. 2.4. The photograph of the TPS experimental setup
  • Fig. 2.5. The bridge circuit used to monitor the voltage variation U (t)
  • 2.5.6 Electrical properties
  • 2.5.7 Thermal and water ageing studies
  • 2.6. References
  • 3. INFLUENCE OF RELATIVE VOLUME FRACTION, INTIMATELY MIXED ORIENTATION AND HYBRIDEFFECT ON THE MECHANICAL PROPERTIES OFSHORT SISAL/GLASS HYBRID FIBRE REINFORCEDLOW DENSITY POLYETHYLENE COMPOSITES
  • 3.1. Introduction
  • 3.2. Results and discussion
  • Fig.3.10. Opfical micrographs of the cross-section of (a) GRP, (b) SRP, (c) GSRPcontaining 0.3 volume fraction of GRP and (d) GSRP containing 0.6 volumefraction of GRP (Magnification X 60)
  • Fig. 3.17. Scanning electron micrograph of fracture surface of GSRP (50150 compositionof SRPIGRP) composites containing untreated fibres.
  • Fig. 3.27. Photomicrographs of the failure surfaces of flexural tested (a) SRP (Vi sisal =0.741, (b) GSRP (Vi sisal: Vf of glass = 0.14: 0.05) and (c) GRP (Vi of gkss =0.14)
  • 3.2.1 Comparison with theoretical predictions
  • 3.2.2 Hybrid effect calculation
  • 3.3. References
  • 4. HYBRID EFFECT IN TENSILE AND FLEXURALPROPERTIES OF SHORT SISAL/GLASS HYBRIDFIBRE REINFORCED LOW DENSITYPOLY ETHYLENE SANDWICH COMPOSITES
  • 4.1. Introduction
  • 4.2. Results and discussion
  • Fig. 4.8. Scanning electron micrographs of tensile fracture surfaces of (a) GSG and (b) SGS at 50150 composition of SRP and GRP
  • Fig. 4.9. Scanning electron micrograph of the cross section of SGS sandwich compositecontaining 50150 composition of SRPIGRP
  • Fig. 4.79. Optical Photomicrographs of tensile side of the tlexural fracture surfaces of (a) GSG, (b) SGS and (c) GSRP at 50/50 composition of SRP and GRP
  • Table 4.1. Water uptake values of composites
  • 4.3. References
  • 5. EFFECT OF FIBRE LENGTH AND CHEMICALMODIFICATIONS ON THE TENSILE PROPERTIESOF INTIMATELY MIXED SHORT SISAL/GLASSHYBRID FIBRE REINFORCED LOW DENSITYPOLYETHYLENE COMPOSITES
  • 5.1. Introduction
  • 5.2. Results and discussion
  • 5.2.1 Fibre length distribution
  • 5.2.2 Tensile properties
  • 5.2.2.1 Effect of fibre length
  • 5.2.2.2 Effect of composition of fibres
  • 5.2.2.3 Effect of chemical modifications
  • (a) Effect of sodium hydroxide treatment (NaOfl
  • Fig. 5.5. SEM photographs of (a) untreated and (b) alkali treated sisal fibre.
  • Fig. 5.6. SEM photographs of tensile fracture surfaces of (a) untreated and (6) alkalitreated GSRP (50/50 SRPIGRP) composites
  • (b) Effect of acelylation ojsi.salfires
  • Fig. 5.8. SEM photograph of acetic anhydride treated sisal fibre
  • Fig. 5.10. SEM photographs of tensile fncture surfaces of acetic anhydride treated GSRP (50150 SRPIGRP) composites
  • (c) Effect of stearic acid treatment
  • Fig. 5.12. SEM photographs of tensile fracture surfaces of stearic acid treated GSRP (50/50) composites
  • (d) Effect of permanganate treatment (KMnO, )
  • Fig. 5.14. SEM photograph of permanganatetreated sisal fibre
  • Fig. 5.15. SEM photographs of tensile fracture surfaces of KMn04 treated GSRP (50/50SRPIGRP) composites
  • (e) Eflect of Maleic anhydride modifications (MAPE)
  • Fig. 5.19. SEM photographs of tensile fracture surfaces of MAP€ modified GSRP (50150SRPIGRP) composites
  • (f) Effect ofsiklne treatment
  • Fig. 5.23. SEM photographs of tensile fracture surfaces of silane treated GSRP (50150SRPIGRP) composites
  • (g) Effect of peroxide [dicumyl (DCP) and benzoyl peroxide (UPO) ]treatment
  • Fig. 5.25. SEM photographs of tensile fracture surfaces of DCP treated GSRP (50150SRPIGRP) composites
  • Fig. 5.26. SEM photographs of tensile fracture surfaces of BP0 treated GSRP (50/50SRPIG RP) composites
  • (h) Comparative efficiency of dqferent treatments
  • 5.3. References
  • 6. THEORETICAL MODELLING OF TENSILE PROPERTIES OF SHORT SISAL, GLASS, INTIMATELY MIXED SISAL/GLASS HYBRID FIBREREINFORCED LOW DENSITY POLYETHYLENECOMPOSITES
  • 6.1. Introduction
  • 6.2. Theory
  • 6.2.1 Theories of rigid particulate reinforcement in non-rigid polymer matrices
  • 6.2.1.1 Einstein and Guth equations
  • 6.2.1.2 Modified Guth equation
  • 6.2.1.3 Modified Kerner equation
  • 6.2.2 The theories of rigid reinforcement (Particulate and fibrous) in rigid matrix
  • 6.2.2.1 Parallel and series models
  • 6.2.2.2 Hirsch model
  • Fig. 6.1. A schematic representation of Hirsch model
  • 6.2.2.3 The Halpin-Tsai model
  • 6.2.2.4 Modified Halpin-Tsai equation
  • 6.2.2.5 Cox model
  • 6.2.2.6 Modified Bowyer and Bader model
  • 6.2.2.7 Additive rule of hybrid mixture
  • 6.3. Results and discussion
  • Fig. 6.9. Photographs of (a) kngitudinally and (b) randomly oriented SRP (20% sisal) composites
  • Fig. 6.13. Optical micrograph of sisaULDPE (SRP) composites showing transcrystallinity (Source: Ref. 38)
  • 6.4. References
  • 7. MELT RHEOLOGICAL BEHAVIOUR OFINTIMATELY MIXED SHORT SISAL/GLASS HYBRIDFIBRE REINFORCED LOW DENSITYPOLYETHYLENE COMPOSITES
  • 7.1. Introduction
  • 7.2. Results and discussion
  • 7.2.1 Effect of shear rate and relative composition of fibres on viscosity
  • 7.2.2 Effect of shear stress and relative composition of fibres on viscosity
  • 7.2.3 Effect of chemical modifications
  • 7.2.4 Effect of temperature
  • 7.2.5 Shear stress-temperature super position master curve
  • 7.2.6 Hybrid effect calculation
  • 7.2.7 Fibre breakage analysis
  • 7.2.8 Die swell ratio
  • 7.2.9 Extrudate characteristics
  • Fig. 7.11. Optical photomicrograph of the extrudates at two different shear rates: A, B, C, D, E, F, G, H indicate ihe LDPE, SRP (20% sisal), GSRP (80120, 60/40, 50/50, 40/60, 20/80 compositions of SRP/GRP) and GRP (20% glass) respectively
  • Fig. 7.12. Optical photomicrograph of the GSRP (50/50 SRP/GRP) extrudafes at a singleshear rate: A, B, C, D, E, F, G, H, I indicate the untreated, alkall, acetic anhydride, stearic acid, KMn04 maleic anhydride, silane, DCP and BP0 respectively
  • Fig. 7.13. Scanning electron micrographs of the surfaces of the extrudates (a) LDPE, (b) SRP (20% sisal), (c) GSRP (40/60 SRPIGRP) and (d) GRP (20% glass)
  • Fig. 7.14. Scanning electron micrographs of the cross-section of the extrudates (a) LDPE, (b) SRP (20% sisal), (c) GSRP (80120 SRPIGRP), (d) GSRP (50I50 SRPIGRP), (e) GSRP (20I80 SRPIGRP) and (f) GRP (20% glass)
  • 7.2.10 Flow behaviour index n
  • 7.3. References
  • 8. THERMOGRAVIMETRIC AND DYNAMICMECHANICAL ANALYSIS OF INTIMATELY MIXEDSHORT SISAL/GLASS HYBRID FIBRE REINFORCEDLOW DENSITY POLYETHYLENE COMPOSITES
  • 8.1. Introduction
  • 8.2. Results and discussion
  • 8.2.1 Thermogravimetric analysis
  • 8.2.2 Dynamic mechanical analysis
  • 8.2.2.1 Effect of composition
  • 8.2.2.2 Effect of chemical modifications
  • 8.2.2.3 Effect of frequency
  • 8.3. References
  • 9. THERMAL CONDUCTIVITY AND THERMALDIFFUSIVITY MEASUREMENTS IN SISAL FIBRE, GLASS FIBRE AND INTIMATELY MIXEDSISAL/GLASS HYBRID FIBRE REINFORCED LOWDENSITY POLYETHYLENE COMPOSITES
  • 9.1. Introduction
  • 9.2. Modeling of thermal conductivity
  • 9.3. Results and discussion
  • 9.3.1 Thermal conductivity measurements
  • 9.3.1.1 Effects of composition of fibres
  • 9.3.2 Effect of fibre orientation
  • 9.3.3 Thermal diffusivity measurements
  • 9.4. Reference
  • 10. ELECTRICAL PROPERTIES OF INTIMATELY MIXEDSHORT SISAL/GLASS HYBRID FIBRE REINFORCEDLOW DENSITY POLYETHYLENE COMPOSITES
  • 10.1. Introduction
  • 10.2. Results and discussion
  • 10.2.1 Dielectric constant
  • (a) Effect offibre length
  • (b) Effect of relative composition of skul und glussfibres
  • (c) Effe of chemical modifications
  • 10.2.2 Volume resistivity
  • 10.2.3 Conductivity
  • 10.2.4 Dissipation factor
  • 10.3. References
  • 11. EFFECT OF AGEING ON THE PROPERTIES OFINTIMATELY MIXED SHORT SISAL/GLASS HYBRIDFIBRE REINFORCED LOW DENSITYPOLY ETHYLENE COMPOSITES
  • 11.1. Introduction
  • 11.2. Results and discussion
  • 11.2.1 Effect of ageing on untreated composites
  • Fig. 11.7. Scanning electron micrographs of aged GSRP (50150 SRPIGRP) samples: (a) exposure in boiling water after 7 h and (b) exposure at elevated temperatureaff er 7 days
  • 11.2.2 Effect of ageing on treated composites
  • 11.3. References
  • COST EFFECTIVENESS ANDPRODUCT DEVELOPMENT
  • Photograph of cupboard manufactured from sisaUglasslPE hybrid composite
  • CONCLUSIONS
  • List of Publications
  • INTERNATIONAL PLASTICS ENGINEERING AND TECHNOLOGY VOL 1. 87-98 (1995)
  • HYBRID FIBRE REINFORCED POLYMERCOMPOSITES
  • Hybrid Effect in the MechanicalProperties of Short SisalIGlass HybridFiber Reinforced Low DensityPolyethylene Composites
  • Influence of Short Glass Fiber Additionon the Mechanical Properties of SisalReinforced Low DensityPolyethylene Composites
  • Theoretical modelling of tensile properties of shortsisal fibre-reinforced low-density polyethylenecomposites