• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 152
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • CONTENTS
  • ACKNOWLEDGEMENT
  • List of Abbreviations
  • I INTRODUCTION AND OBJECTIVES
  • A. Copper ion-specific polymera by surfkce-templatepolymerization
  • B. Metal ion specificities of metal ion-desorbed polymer-metalcomplexes
  • Organisation of the Thesis
  • II MOLECULAR IMPRINTING: NEW POSSIBILITIES FOR THE DEVELOPMENT OF METAL ION SPECIFIC POLYMERS
  • II. 1. Molecular Imprinting. Basic Principle
  • II. 2. Molecular Imprinting in Synthetic Polymers
  • II. 3. Factors Influencing the Specificity and Selectivity Characteristics of Imprinted Polymers
  • 3 (a) Rigidity of the polymer support
  • 3 (b) Flexibility of the polymer support
  • 3 (c) Accessibility of the binding sites
  • 3 (d) Mechanical stability
  • II. 4. Imprinted Cavities in Different Types of Polymer Supports
  • 4 (a) Organic polymer layers on inorganic supports
  • 4 (b) Imprinting on silica gels
  • II. 5. Molecular Imprinting in Biopolymers
  • 5 (a) In proteins
  • 5 (b) In carbohydrates
  • II. 6. Binding by Interaction Through Metal Complexes
  • 11.7. Metal-ion Selective Imprinted Polymers
  • Table 11.1. Examples of metal ion selective imprinted polymers
  • II. 8. Various Approaches for the Synthesis of Metal Ion Selective Polymers
  • 8 (a) From linear polymers
  • 8 (b) Polymerization of mixtures of monomers containing complexing groups
  • 8 (c) Molecularly imprinted polymer using Surface-templated polymer
  • II. 9. Applications of Molecularly Imprinted Polymers
  • 9 (a) Chromatography
  • 9 (b) Imprinted polymers for rodloimmunoassgy
  • 9 (c) In calalysis
  • 9 (d) Molecularly imprinted polymers in the design of biosensors
  • 9 (e) Selective reactions in molecularly imprinted cavities
  • 9 (f) Applications in selective metal ion concentration
  • II.10. References
  • III TAILORING OF METAL ION-IMPRINTED MICROSPHERES USING SURFACE –TEMPLATE POLYMERIZATION: SYNTHESIS, CHARACTERISATION AND SPECIFICITY STUDIES
  • III. I. Preparation of DVB-, EGDMA-, BDDMA- and HDODA-crosslinked Cu (II) Ion-imprinted Microspheres using Surface-template Polymerization
  • III. 2. Desorption of Imprinted Cu (II) Ions from the Imprinted Microspheres and the Cu (II) Rebinding Studies
  • III. 3. Metal Ion Specificities of DVB-, EGDMA-, BDDMA- and HDODA crosslinked Cu (II) Ion-desorbed Imprinted and Unimprinted Microspheres
  • 3 (a) Comparison of the Cu (II) ion rebindings of Cu (II) ion-imprinted and unimprinted microrpheres
  • 3 (b) Effect of pH Dependence on metal ion rebinding
  • 3 (c) Effect of the nature and the degree of cross linking agent on the metal ion specificity
  • III. 4. Characterization of Cu (II) Ion-imprinted and Unimprinted Microspheres
  • 4 (a) FT-IR spectra
  • 4 (b) UV-vis spectra
  • 4 (c) EPR spectra
  • 4 (d) SEM
  • Fig.III.8. Scanning electron micrograph of 17 molO/o DVB-crosslinked (a) unimprinted microspheres and (b) Cu (1I) ion-imprintedmicrospheres
  • Fig.III.9 (a) Scanning electron micrograph of 17 mol% EGDMA-crosslinkedCu (1X) ion-imprinted microspheres
  • Fig.III.9 (b) Scanning electron micrograph of 17 mol% BDDMA-crosslinkedCu (I1) ion-imprinted microspheres
  • Fig.III.9 (c) Scanning electron micrograph of 17 molO/o WDODA-crosslinkedCu (1I) ion-imprinted microspheres
  • III. 5. Metal Ion Selectivity Studies of Cu (II) Ion-imprinted and Unimprinted Microspheres
  • III. 6. References
  • IV POLYMER-METAL COMPLEXES OF CROSSLINKED POLYACRYLAMIDE AND POLYSTYRENE-SUPPORTED LIGANDS: SYNTHESIS, CHARACTERISATION AND SPECIFICITY STUDIES
  • IV.A. Polymer Metal complexes of Polyacrylamide- and Polystyrene supported Glycines
  • A.1. Preparation of Linear Polyacrylamide
  • A.1. Preparation of 2 to 20 mol% DVB-crosslinked Polyacrylamides
  • A.1. Preparation of 2 to 20 mol% NNMBA-crosslinked Polyacrylamides.
  • A.1. Preparation of 8 mol% EGDMA-, BDDMA- and HDODA-crosslinked Polyacrylamides
  • A.1. Preparation of Linear, DVB-, NNMBA-, EGDMA-, BDDMA and HDODA-crosslinked Polyacrylamide-supported Glycines
  • A.1. Preparation of Polystyrene-supported Sodium Salt of Glycine
  • A.1. Metal Ion Complexations of Polyacrylamide- and Polystyrene supported sodium salt of glycines
  • A.1. Characterization of functionalized and unfunctionalized polyacrylamides and Polystyrenes and their Metal Complexes
  • 8 (a) FT-IR spectra
  • 8 (b) UV -visible spectra
  • 8 (c) EPR spectra
  • 8 (d) SEM
  • Fig. N. 14. SEM of (a) 4mo1°/o DVB-crosslinked polyacxylamide-supported~lvcinea nd (bl Cu (IIl comnlex
  • Fig. IV. l.5. SEM of (a) 4mol% NNMBA-crosslinked polyacrylamide supported glycine and (b) Cu (II) complex
  • A.1. Effect of pH Dependence on Metal Ion Binding
  • A.10. Swelling studies of 2-20 mol% DVB- and NNMBA- and 8 mol% EGDMA-, BDDMA- and HDODA-crosslinked Polyacrylamide, polyacrylamide-supported Glycine and Cu (II) Complexes
  • A.11. Metal Ion Rebinding Studies of Metal Ion Desorbed Systems
  • A.12. pH Dependence on Metal Ion Rebinding
  • A.13. Time-coure and Kinetics of Metal Ion Binding and Rebinding
  • 13 (a) Time-course of metal ion binding and rebinding
  • 13 (b) Kinetics of metal ion binding and rebinding
  • A.14. Metal ion Selectivity Studies of Polyacrylamide and Polystyrene supported Glycines and their Metal Ion Desorbed Systems
  • IV.B. Polymer Metal Complexes of polystyrene-supported N, N-bis (salicylidene-2-aminoethyl) aminomethyl and N, N-bis (2-aminoethyl) aminomethyl Groups
  • B.1. Preparation of Crosslinked N, N-bis (salicylidene-2-aminoethyl) aminomethyl Polystyrenes
  • 1(a) Preparation of 2 mol%EGDMA-, BDDMA-, and HDODA-crosslinked polystyrenes
  • 1(b) Preparation of 2 mol% EGDMA-, BDDMA-, and HDODA-crossIinked.44 chloromethyl poystyrenes
  • 1 (c) Preparation of NN-bis (salscylidene-2-aminoethyl) aminomethyl polystyrenes
  • B.2. Metal Ion Complexation of Crosslinked N, N-bis (salicylidene-2-aminoe aminomethyl Polystyrenes
  • B.3. Characterization of Polymer Anchored Schiff Bases and Metal Complexes
  • 3 (a) FT-IR spectra
  • 3 (b) UV-vis spectra
  • 3 (c) EPR spectra
  • 3 (d) CNMR
  • B.4. Influence of pH on Metal Ion Complexation of N, N-bis (salicylidene aminoethyl) aminomethyl Polystyrenes
  • B.5. Swelling Studies of N, N-bis (salicylidene aminoethyl) aminomethyl Polystyrenes and Cu (II) Complexes
  • B.6. Recyclability Studies
  • IV.C. Metal Ion Complexations of 2 mot% EGDMA-, BDDMA- and HDODA Crosslinked N, N-bis (2-aninoethyl) aminomethyl Polystyrenes
  • C.1. Preparation of 2 mol% EGDMA-, BDDMA- and HDODA-crosslinked N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
  • C.2 Metal Ion Complexations of Various Crosslinked N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
  • C.3. Characterisation of N, N-bis (2-aminoethyl) aminomethyl Polystyrenes and Derived Metal Complexes
  • (i) FT-IR spectra
  • (ii) UV-visible spectra
  • (iii) EPR spectra
  • C.4. Swelling Studies of N, N-bis (salicylidene-2-aminoethyl) aminomethyl Polystyrene and Cu (II) Complexes
  • C.5. Effect of pH Dependence of N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
  • C.6. Metal Ion Specificity Studies of Crosslinked N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
  • IV. D. References
  • V EXPERIMENTAL
  • V.1.General
  • 1 (a) Materials
  • 1 (b) Instrumental
  • V.2.Preparation of Metal Ion-imprinted Microsphere Using Surface-templated Polymerization
  • 2 (a) Preparation of DVB-crosslinked Cu (II) ion-imprinted microspheres
  • 2 (b) Preparation of EGDMA-crosslinked Cu (II) ion-imprinted microspheres
  • 2 (c) Preparation of BDDMA-crosslinked Cu (II) ion-imprinted microspheres
  • 2 (d) Preparation of HDODA-crosslinked Cu (II) ion-imprinted microspheres
  • V.3. Desorption of Imprinted Metal Ion from the Microspheres: General Procedure
  • V.4. Metal Ion Specificity Studies of Metal Ian-desorbed Imprinted and Unimprinted Microspheres: General Procedure
  • V.5. Selectivity Studies of Metal Ion-desorbed Imprinted and Unimprinted Microspheres: General Procedure
  • V. 6. Preparation of Linear, DVB-, NNMBA-, EGDMA-, BDDMA- and HDODA-cross linked Polyacrylamides
  • 6 (a) Preparation of linear polyacrylamide
  • 6(b) Preparation of 2-20 mol% DVB-cross linked polyacrylamides
  • 6(c) Preparation of 2-20 mol% NNMBA crosslinked polyacrylamides
  • 6(d) Preparation of 8 mol% EGDMA-cross linked poyacrylamide
  • 6(e) Preparation of 8 mol% BDDMA-crosslinked polyacrylamide
  • 6(f) Preparation of 8 mol% HDODA-crosslinked polyacrylamide
  • V. 7. Preparation of Crosslinked Polyacrylamide Polystyrene-supported Sodium Salt of Glycines
  • 7 (a) Transamidation of polyacrylamides with sodium salt of glycine
  • 7(b) Preparation of 2 mol% macroporous polystyrene-supported glycines
  • V. 8. Estimation of Carboxyl Capacity
  • V. 9. Metal Ion Complexations of Polyacrylamide -and Polystyrene-supported Sodium Salt of Glycines: General Procedure
  • V.10. Effect of pH Dependence on Metal Ion Binding and Rebinding
  • V.11. Swelling Studies of Crosslinked Polyacrylamides, Polyacrylamide-Supported Glycines and Cu (II) Complexes: General Procedure
  • V.12. Kinetics of Metal Ion Binding and Rebinding
  • V.13. Desorption of Complexed Metal Ions: General Procedure
  • V.14. Rebinding of Metal Ions: General Procedure
  • V.15. Selectivity Studies: General Procedure
  • V.16. Preparation of N, N-bis (salicylidene-2-aminoethyl) aminomethyl and N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
  • 16(a) Preparation oft mol% EGDMA-, BDDMA-, and HDODA-cross linked poysyrenes.
  • 16 (b) Chloromethylation of crosslinked polystyrenes
  • 16 (c) Estimation of chlorine capacity-Volhards method
  • 16 (d) Preparation of N, N-bts (salicylidene-2-aminoethyl) aminomethyl polystyrenes
  • 16 (e) Preparation of N N-bis (2-aminoethyl) aminomethyl poystyrenes
  • 16 (f) Metal ion complexations, metal ion desorption and specificity.studies
  • VI CONCLUSION AND OUTLOOK
  • (a) Metal ion imprinted systems
  • (b) Metal ion desorbed systems