• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 329
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE 1
  • CERTIFICATE-2
  • DECLARATION
  • ACKNOWLEDGEMENT
  • GLOSSARY OF TERMS
  • CONTENTS
  • CHAPTER 1 INTRODUCTION
  • 1.1. Fundamentals of transport phenomena
  • 1.2. Factors contributing the transport process
  • 1.2.1 Nature of the polymer
  • 1.2.2 Nature of cross links
  • 1.2.3 Effect of plasticizers
  • 1.2.4 Nature of the penetrant
  • 1.2.5 Fillers
  • 1.2.6 Temperature
  • 1.3. Transport phenomena in different polymeric systems
  • 1.3.1 Diffusion in rubbery polymers
  • 1.3.2 Diffusion in glassy polymers
  • 1.3.3 Diffusion in polymer blends
  • 1.4. Membrane based transport process
  • Fig. 1.4. Configuration, morphology, transport and permselectivity employed inmembrane science and technology. [H. F. Mark, eta/., Ettcyclopedia ofPolymer Sciettce and Et~gineeri~zVg, o l. 9, John Wiley and Sons, 1986, p. 5731.
  • 1.4.1 Liquid separation by pervaporation
  • Fig. 1.5. The principle involved in pervaporation process. [M. 0. David, R. Gref, T. Q. Nguyen and J. Neel, Trans. Ichrrn F;. 69, 335 (1991) ].
  • Fig. 1.6. Solution-difision transport model. J. G. Wijmans and R. W. Baker, J.Membr. Sci., 107, 1 (1995) ].
  • 1.4.2 Vapour permeation
  • 1.4.3 Gas permeation
  • 1.5. Scope of the work
  • 1.6. References
  • CHAPTER 2 MATERIALS AND EXPERIMENTAL TECHNIQUES
  • 2.1. Materials used
  • 2.1.1 Rubber chemicals
  • 2.1.2 Fillers
  • 2.1.3 Solvents
  • 2.2. Preparation of rubber compounds
  • 2.2.1 Compounding of the mixes
  • 2.2.2 Blend preparation
  • 2.2.3 Curing of the samples
  • 2.2.4 Moulding of samples
  • 2.3. Sorption studies
  • 2.4. Pervaporation
  • Fig. 2.2. Pervaporation apparatus
  • 2.5. Vapour permeation
  • 2.6. Gas permeation
  • Fig. 2.3. Gas permeation apparatus
  • 2.7. Blend morphology
  • 2.8. Dynamic mechanical analysis
  • 2.9. Bound rubber measurements
  • 2.10. Physical testings
  • 2.11. NMR measurements
  • 2.12. Determination of the concentration of polysulphidic cross links
  • 2.13. Determination of swelling behaviour of cross linked membranes
  • 2.14. References
  • 3.1. Results and discussion
  • 3.1.1 Effect of nature of cross links
  • 3.1.2 Effect of penetrant size
  • 3.1.3 Mechanism of transport
  • 3.1.4 Diffusivity, sorptivity and permeability
  • 3.1.5 Effect of temperature
  • 3.1.6 Thermodynamic and kinetic parameters
  • 3.1.7 Swelling parameters
  • 3.1.8 Comparison with theory
  • 3.2. References
  • CHAPTER 4 TRANSPORT OF AROMATIC HYDROCARBONS THROUGH CONVENTIONALLY CROSSLINKED SBR MEMBRANES: EFFECT OF DEGREE OF CROSSLINKING ON SWELLING AND MECHANICAL PROPERTIES
  • 4.1. Results and discussion
  • 4.1.1 Transport properties
  • 4.1.2 Mechanical properties of unswollen, swollen and deswollen SBR membranes
  • Fig. 4.9. Variation of tensile strength with crosslink density
  • 4.2. References
  • CHAPTER 5 TRANSPORT OF ALIPHATIC HYDROCARBONS THROUGH STYRENE-BUTADIENE RUBBER: EFFECT OF NATURE OF CROSSLINKS ON SWELLING AND MECHANICAL BEHAVIOUR
  • 5.1. Results and discussion
  • 5.1.1 Effect of the nature of cross links
  • Fig. 5.2. Schematic model for swelling In defferently cross linked membranes
  • Fig. 5.4. CNMR spectra of (a) uncured SBR and (b) SBR cured by CV system
  • 5.1.2 Diffusivity and permeability
  • 5.1.3 Effect of temperature
  • Table 5.6. Arrhenius parameters and thermodynamic constants
  • 5.1.4 Kinetics of sorption
  • 5.1.5 Interaction parameters
  • 5.1.6 Sorption (S), desorption (D), resorption (RS) and redesorption (RD)
  • 5.1.7 Tensile behaviour
  • Fig. 5.20. Variation of Youngs modulus with crosslinlung systems
  • Fig. 5.22. Variation of tensile strength with crosslinking systems
  • 5.1.8 Degree of cross linking
  • 5.2. References
  • CHAPTER 6 THE EFFECT OF TYPE AND DOSAGE OF CARBON BLACK ON THE TRANSPORT BEHAVIOUR OF CROSSLINKED STYRENE BUTADIENE RUBBER
  • 6.1. Results and discussion
  • 6.1.1 Cure characteristics
  • 6.1.2 Sorption results
  • 6.2. References
  • CHAPTER 7 MOLECULAR TRANSPORT OF AROMATIC HYDROCARBONS THROUGH NYLON 6/ETHYLENE PROPYLENE RUBBER BLENDS
  • 7.1. Results and discussion
  • 7.1.1 Effect of blend ratio
  • Fig. 7.2. SEM photograph showing the morphology of NylodEPR blends: (a) E30: EPR is dispersed as domains in the continuous nylon matrix; (b) E 5 ~in: t erpenetrating co-continuous morphology and (c) E70: nylonis dispersed as domains in the EPR matrix.
  • 7.1.2 Effect of penetrant size
  • 7.1.3 Effect of temperature
  • 7.1.4 Diffusivity, sorptivity and permeability
  • 7.1.5 Arrhenius, thermodynamic and kinetic parameters
  • 7.1.6 Interaction parameter
  • 7.1.7 Mechanism of transport
  • 7.1.8 Comparison with theory
  • 7.2. References
  • CHAPTER 8 SBR / NR BLEND MEMBRANES: MORPHOLOGY, MISCIBILITY, AND TRANSPORT BEHAVIOUR
  • 8.1. Results and discussion
  • 8.1.1 Processing characteristics
  • 8.1.2 Morphology of blends
  • 8.1.3 Dynamic mechanical analysis
  • 8.1.4 Transport properties
  • (a) Effect of blend composition
  • (b) Dqfusivity, sorptivity and permeability
  • (e) Effect of temperature
  • (d) Network choracterkotion
  • (e) Conrparkon with theory
  • (f) Sorption (S) -desorption (D) -resorption (RS) -redesorption (RU)
  • 8.1.5 Mechanical properties
  • Model fitting
  • 8.1.6 Comparison of degree of cross linking estimated from swelling, stress-strain and dynamic mechanical analyses
  • 8.2. References
  • CHAPTER 9 SEPARATION OF ORGANIC LIQUID MIXTURES BY PERVAPORATION USING STYRENE-BUTADIENE RUBBER / NATURAL RUBBER BLEND MEMBRANES
  • 9.1. Results and discussion
  • 9.1.1 Separation of chlorohydrocarbon-acetone mixtures using differently cross linked SBR / NR (50/50) blend membranes
  • 9.1.1.1 Cure characteristics
  • 9.1.1.2 Physical properties of SBR / NR blend membranes
  • 9.1.1.3 Influence of feed composition and nature of cross links
  • 9.1.2 Separation of alkane-acetone mixtures using conventionally vulcanised SBR / NR blend membranes
  • 9.1.2.1 Pervaporation characteristics of the SBR / NR blend membranes
  • 9.1.2.2 The effect of feed composition
  • 9.1.2.3 Molecular size of the permeating species
  • 9.2. References
  • CHAPTER 10 TRANSPORT OF CHLORINATED HYDROCARBON VAPOURS THROUGH STYRENE BUTADIENE RUBBER / NATURAL RUBBER BLENDS AND NYLON / ETHYLENE-PROPYLENE RUBBER BLENDS
  • 10.1. Results and discussion
  • 10.1.1 SBR / NR Blend membranes
  • 10.1.1.1 Effect of blend ratio
  • 10.1.1.2 Investigation of the blend morphology
  • 10.1.1.3 Effect of vulcanising systems
  • 10.1.2 Nylon / EPR membranes
  • 10.1.2.1 Effect of blend ratio
  • 10.1.2.2 Effect of compatibilisation
  • 10.1.2.3 Effect of dynamic vulcanisation
  • 10.2. References
  • CHAPTER 11 PERMEATION OF NITROGEN AND OXYGEN THROUGH SBR, NR AND SBR/NR BLEND MEMBRANES
  • 11.1. Results and discussion
  • 11.1.1 SBR membranes
  • 11.1.1.1 O2 / N2 selectivity of SBR membranes
  • 11.1.2 SBR / NR blends
  • 11.1.3 Effect of blend composition on pure gas permeability
  • 11.1.4 Comparison of pure gas permeability of SBR / NR blends with models for permeation in heterogeneous media
  • 11.1.5 Effect of blend composition on oxygen to nitrogen selectivity
  • 11.2. References
  • CHAPTER 12 CONCLUSION AND FUTURE OUTLOOK
  • Future outlook
  • APPENDICES
  • APPENDIX 1 List of Publications
  • APPENDIX 2 Papers presented at National/lnternationalConferences
  • Curriculum Vitae
  • Molecular transport of aromatichydrocarbons through crosslinkedstyrene-butadiene rubber membranes