• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 317
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • Preface
  • CONTENTS
  • PART I
  • 1. GENERAL INTRODUCTION AND EXISTING INFORMATION OF RARE EARTH MIXED CRYSTALS OF BARIUM MOLYBDATES AND COPPER OXALATES
  • 1.1 Introduction
  • 1.2 Mixed crystals of rare earth barium molybdates
  • 1.2.1 Existing information on molybdates
  • 1.2.2 Chemistry of molybdates
  • 1.2.3 Structure and symmetry
  • 1.2.4 Properties
  • 1.2.5 Habits
  • 1.3 Mixed crystals of rare earth copper oxalates
  • 1.3.1. Existing information on oxalates
  • 1.3.2. Chemistry of oxalates
  • 1.3.3. Structure and symmetry
  • 1.3.4. Properties
  • 1.3.5. Habits
  • 2. CRYSTAL GROWTH IN GELS
  • 2.1. Introduction
  • 2.2. Existing growth procedures - a review
  • 2.3. Different types of gel and structure of silica hydrogel
  • 2.4. Growth characteristics in gel
  • 3. EXPERIMENTAL TECHNIQUES
  • 3.1. Introduction
  • 3.2. silvering technique
  • 3.3. Optical microscopy
  • 3.4. Scanning electron microscopy
  • 3.5. X-ray diffractometry
  • 3.6. Etching technique
  • 3.7. Infrared spectroscopy
  • 3.8. Energy dispersive analysis of X-rays
  • 3.9. Laser Raman spectroscopy
  • 3.10. u-v-visible - near infrared spectroscopy
  • 3.11. Thermal analyses
  • 3.12. XRF analysis
  • 3.13. ICP analysis
  • PART II
  • 4. GROWTH KINETICS AND CHARACTERIZATION OF SAMARIUM BARIUM MOLYBDATE MIXED CRYSTALS IN SILICA GEL
  • 4.1. Introduction
  • 4.2. Experimental
  • 4.2.1. Single diffusion experiments
  • 4.2.2. Double diffusion experiments
  • 4.3. Observations
  • 4.3.1. Growth of samarium barium molybdate mixed crystals
  • 4.3.2. Effect of variation in the concentration of top solution
  • Table 4.1 EXPERDENTAL CONDITIONS EQR THE CRYSTALLIZATION OFSAMARIUM BARIUM MOLYBDATE CRYSTALS IN SILICA GEL
  • Table 4.2 EXPERIMENTAL CONDITIONS FOR THE CRYSTALLIZATION OFSAMARIUM BARIUM MOLYBDATE CRYSTALS IN SILICA GEL
  • Fig. 4.3 Effect of concentration on therate of displacewnt ofprecipitate front.
  • Fig. 4.4. Effect of concentration on the rate of disaolntionfmnt.
  • 4.3.3. Effect of pH variation on precipitation and dissolution rates
  • Fig.4.5 Effect of pH of gel on precipitation front movements
  • Fig. 4.6 Effect of pH of gel on dissolution frontmovements
  • 4.3.4. Liesegang ring formation
  • 4.3.5. Morphology of the crystals
  • Fig. Captions
  • PLATE I
  • 4.4. Characterization
  • 4.4.1. Chemical analysis
  • 4.4.2. X-ray analysis
  • Table 4.3 X-RAY POWDER DATA
  • Fig. 4.11 XRD diffraction pattern of samarium barium molybdatemixed crystal.
  • 4.4.3. IR analysis
  • 4.4.4. Laser Raman spectra analysis
  • Fig. 4.12. Infrared spectrum of samarium barium molybdatemixed crystal.
  • Fig.4.13. Laser Raman spectrum of samarium barium molybdate mixed crystal
  • 4.4.5. uv-visible - near infrared analysis
  • 4.4.6. Thermal analyses
  • Fig. 4.14 W-visible-near infrared spectrumof samarium barium molybdatemixed crystal.
  • 4.4.7. EDAX
  • Fig.4.15 TGA plot of samarium barium molybdate mixed crystal
  • Fig.4.16 DSC plot of the mixed crystal samarium barium molybdate
  • Fig. 4.17 EDAX pattern of samarium barium molybdatemixed crystal
  • Table 4.4 RESULTS OF EDAX
  • 4.4.8. XRF analysis
  • Fig. 4.18. XRF plot of the samarium bariummolybdate mixed crystal.
  • 4.5. Conclusion
  • 5. OBSERVATIONS ON THE GROWTH AND CHARACTERIZATION OF MIXED CRYSTALS OF NEODYMIUM BARIUM MOLYBDATE
  • 5.1. Introduction
  • 5.2. Experimental
  • 5.3. Growth procedure
  • 5.3.1. Effect due to change in concentration of the nutrients
  • Table 5.1 Experimental Conditions for the Growth of Neodymium BariumMolybdate Crystals in Gel
  • Fig. 5.3 Rate of displacements of precipitation anddissolution fronts due to the change in theouter electrolyte (pa = 8)
  • Fig. 5.4 Rate of displacements of preaipitatim anddoiustseorl eulteicotnr forloynttes (dpuHe = t S
  • 5.3.2. Effect due to change in pH of the gel
  • Fig. 5.5 Square of length versus t i m e of growthof g e l grown b i p y r d d a l octahedralcrystals for different outer electrolyteconcentation.
  • Fig. 5.6 plot showing time-displac-t ofand partial dissolutionftonts due to change in PH of ae gel
  • 5.3.3. Morphology of the crystals
  • 5.4. Characterization
  • 5.4.1. X-ray analysis
  • Fig. Captions
  • PLATE II
  • 5.4.2. IR analysis
  • Fig. 5.13 XRD pattern of neodymium barium molybdate mixed crystal
  • Table 5.2 X-RAY POWDER DATA
  • Fig. 5.14 Infrared spectrum of neodymium barium molybdate mixed crystal
  • 5.4.3. Laser Raman spectra analysis
  • 5.4.4. uv-visible -near infrared analysis
  • 5.4.5. EDAX
  • Fig. 5.15. Raman spectrum of neodynium barium molybdate mixed crystal (Range: 30- 1300 cm-1)
  • Fig.5.16. Raman spectrum of neodymium barium molybdate mixed crystal (Range: 1400- 2600) cm-1
  • Fig.5.17. uv-visible-near infrared absorption spectrum of neodymium barium molybdate crystal.
  • 5.4.6. XRF analysis
  • Fig.5.18 EDAX pattern of neodymium barium molybdate mixed crystal
  • Fig. 5.19. XRF spectrum of the neodymiumbarium molybdate mixed c r y s t a
  • 5.4.7. Thermal analyses
  • 5.5. Conclusion
  • Fig.5.20. TGA plot of neodymium barium molybdate mixed crystal
  • Fig. 5.21. DTA plot of neodymium barium molybdate mixed crystal
  • 6. GROWTH, CHARACTERIZATION AND IDENTIFICATION OF GEL GROWN PRASEODYMIUM BARIUM MOLYBDATE MIXED CRYSTALS
  • 6.1. Introduction
  • 6.2. Growth procedure
  • 6.3. Discussion
  • 6.3.1. Effect of density of gel
  • 6.3.2. Effect of variation in the concentration of inner and outer electrolytes
  • Fig. 6.l (a) The effect of variationof the outer electrolyteon precipitation front.
  • Fig. 6. l (b) The effect of variationof the outer electrolyteon dissolution front.
  • 6.3.3. Effect of variation in the pH of gels
  • 6.3.4. Liesegang ring formation
  • 6.4. Morphology of the crystals
  • Table 6.1EXPERIMENTAL CONDITIONS FOR THE GROWTH OF PRASEODYMIUMBARIUM MOLYBDATE CRYSTALS IN GEL
  • Fig. Captions
  • PLATE III
  • 6.5. Characterization
  • 6.5.1. Chemical analysis
  • 6.5.2. XRD analysis
  • Table 6.2 X-RAY DATA
  • Fig.6.12 X-ray diffraction pattern of praseodymium barium molybdate mixed crystal
  • 6.5.3. IR analysis
  • Fig.6.13. Infrared spectrum of praseodymium barium molybdate mixed crystal
  • 6.5.4. Laser Raman spectra analysis
  • 6.5.5. Spectrophotographic (uv-visible – near infrared) analysis
  • Fig.6.14 Raman spectrum of praseodymium barium molybdate mixed crystal
  • Fig. 6.15. uv-visible-near infrared spectrum of praseodymiumbarium molybdate mixed crystal. (Range: 200-300 and 400-500)
  • 6.5.6. EDAX analysis
  • Table 6.3 EDAX DATA
  • Fig.6.16 EDAX pattern of praseodymium barium molybdate mixed crystal
  • 6.5.7. XRF analysis
  • 6.5.8. Thermal analyses
  • Fig. 6.17. XRF spectrum of the praseodymiumbarium molybdate mixed crystal.
  • Fig. 6.18 TGA plot of praseodymium barium molybdate mixed crystal
  • Fig.6.19 DSC plot of praseodymium barium molybdate mixed crystal
  • 6.6 Conclusion
  • 7. RARE EARTH (Sm, Nd, Pr) MIXED BARIUM MOLYBDATE SINGLE CRYSTALS - IN GENERAL
  • 7.1. Introduction
  • 7.2. Discussion
  • 7.2.1. Growth and effect of different parameters on the growth of the crystals
  • 7.2.2. Morphology
  • 7.2.3. Identification and characterization
  • Table 7.1-1SPECTRA DATA (~ n) A ND BAND ASSIGNMENTS OF MIXED CRYSTALSOF RARE EARTB (Sm, Nd 6 Pr) BARIUM MOLYBDATE
  • 7.3. Conclusion
  • PART III
  • 8. GROWTH AND CHARACTERIZATION OF MIXED CRYSTALS OF SAMARIUM COPPER OXALATE IN SILICA GEL
  • 8.1 Introdction
  • 8.2. Experimental
  • 8.2.1. Single diffusion process
  • 8.2.2. Double diffusion process
  • 8.3 Observations
  • 8.3.1. Growth of samarium copper oxalate crystals
  • 8.3.2. Effect of variation in the concentration of outer electrolyte
  • 8.3.3. Effect of pH variation of gels
  • Fig. 8.3 The effect of concentrationof outer electrolyte on therate of displacement ofprecipitation front andcryetallization region
  • Fig.8.4 Variation in depth ofprecipitation and regionof crystallization withrespect to change in pHvalue of the gel.
  • Table 8.1EXPERIMENTAL GROWTH CONDITIONS OFSAHARIUM COPPER OXALATE MIXED CRYSTALS
  • 8.3.4. Liesegang ring formation
  • 8.3.5. Morphology
  • 8.3.6. Spherulitic formation
  • 8.3.7. Etching
  • Fig. Captions
  • PLATE IV
  • 8.4. Characterization
  • 8.4.1. Chemical analysis
  • FIGURB CAPTIONS
  • PLATE V
  • 8.4.2. X-ray analysis
  • 8.4.3. IR analysis
  • Fig.8.15 X-ray diffraction pattern of samarium copper oxalate mixed crystal
  • Table 8.2.X-RAY m E R DATA
  • Fig.8.16 Infrared spectrum of samarium copper oxalate mixed crystal
  • 8.4.4. Laser Raman spectra analysis
  • Fig. 8.17. Raman spectrum of safarium copper oxalate mixed crystal (Range: 50-2000 cm-)
  • Fig.8.18 Raman spectrum of samarium copper oxalate mixed crystal
  • 8.4.5. uv-visible -near infrared analysis
  • 8.4.6. EDAX
  • Fig. 8.19. uv-visible-near infrared spectrum of the samariumcopper oxalate mixed crystal.
  • Table 8.3 EDAX RESULTS
  • Fig. 8.20 EDAX pattern of the spherulite samarium copperoxalate.
  • 8.4.7. XRF analysis
  • 8.4.8. Thermal analyses
  • Fig. 8.21. XRF plot of samarium copper oxalate mixed crystal
  • Fig.8.22 TGA plot of the mixed crystal samarium copper oxalate
  • 8.5 Conclusion
  • Fig. 8.23 DSC plot of samarium copper oxalate mixed crystal.
  • 9. GROWTH KINETICS AND CHARACTERIZATION OF NEODYMIUM COPPER OXALATE MIXED CRYSTALS
  • 9.1 Introduction
  • 9.2 Growth procedure
  • Table 9.1 EXPERIMENTAL CONDITIONS FOR CRYSTALLIZATION OF NEODYMIUMCOPPER OXALATE MIXED CRYSTALS
  • 9.3 Observations
  • 9.3.1. Effect of variation in the concentration of outer electrolyte
  • 9.3.2. Effect of pH variation of gels
  • Fig.9.3 Variation in the depth of precipitation and crystallisation region with respect to concentration of outer electrolyte (pH =7)
  • Fig.9.4 Variation in the depth of precipitation and crystallisation region with respect to concentration of outer electrolyte (pH = 8)
  • Fig. 9.5 Variation in the depth of precipitationand crystallization region with respectto the pHofthe gel
  • 9.3.3. Morphology of the crystals
  • Fig. Captions
  • PLATE VI
  • 9.4 Characterization
  • 9.4.1. Chemical analysis
  • 9.4.2. XRD analysis
  • Fig. Captions
  • PLATE VII
  • 9.4.3. IR analysis
  • Fig.9.14 XRD pattern of neodymium copper oxalate mixed crystal
  • Table 9.2 XRD DATA OF NEODYMIUM COPPER OXALATE
  • Fig.9.15. Infrared absorption spectrum of Neodymium copper oxalate mixed crystal
  • 9.4.4. Laser Raman spectra analysis
  • Fig. 9.16. Raman spectrum of neodymium copper oxalate mixed crystal (100-2500 cm-1
  • Fig.9.17.Raman spectrum of neodymium copper oxalate mixed crystal (2500-3600 cm-1)
  • 9.4.5. uv-visible-near infrared analysis
  • 9.4.6. EDAX visible
  • Fig. 9.18. uv-visible-near infrared spectrum of themixed crystal neodymium co er oxalate (Range: 200-280 and 400-60 8
  • Fig. 9.19 EDAX pattern of neodymium copper oxalatemixed crystal.
  • Table 9.3EDAX DATA OF NEODYMIUM COPPER OXALATE MIXED CRYSTAL
  • 9.4.7. ICP analysis
  • 9.4.8. XRF analysis
  • 9.4.9. Thermal analyses
  • Fig 9.20 XRF spectrum of neodymium copper oxalate mixed crystal
  • Fig.9.21. TGA plot of the mixed crystal neodymium copper oxalate
  • Fig.9.22 DSC plot of neodymiunm copper oxalate mixed crystal
  • 9.5 Conclusion
  • 10. OBSERVATIONS ON THE GROWTH AND CHARACTERIZATION OF PRASEODYMIUM COPPER OXALATE MIXED CRYSTALS
  • 10.1 Introduction
  • 10.2 Growth procedure
  • 10.3 Observations
  • 10.3.1 Effect of variation in the concentration of outer electrolyte
  • 10.3.2 Effect of pH variation of gels
  • Table 10.1EXPERIMENTAL CONDITIONS FOR CRYSTALLIZATION OFPRESEODYMIUM COPPER OXALATE MIXED CRYSTALS
  • Fig.10.1 Effect of variation of the outer electrolyte on depthof precipitation and crystallizationregion (pH=
  • Fig. 10.2 Effect of variation of theouter electrolyte on depthof precipitation and cry- -stallization region (pH=7)
  • 10.3.3 Morphology of the crystals
  • Fig.10.3 Effect of pH on precipitation and crystallization front movements.
  • Fig. Captions
  • PLATE VIII
  • 10.4 Characterization
  • 10.4.1 Chemical analysis
  • 10.4.2 XRD analysis
  • Fig.10.13 XRD pattern of praseodymium copper oxalate crystal
  • Table 10.2 XRD DATA OF PRASEODYMIUM COPPER OXALATE MIXED CRYSTAL
  • 10.4.3 IR analysis
  • Fig.10.14 Infrared absorption spectrum of praseodymium copper oxalate mixed crystal.
  • 10.4.4 Laser Raman spectra analysis
  • 10.4.5 UV-visible-near infrared analysis
  • 10.4.6 EDAX
  • Fig.lO.17 uv-visible-near infrared spectrumof praseodymium coppcr oxa laLemixed crystal (Range: 200-500)
  • 10.4.7 ICP analysis
  • Fig. 10.18 (a) EDAX pattern ofpraseodymium copperoxalate mixed crystal
  • Fig. 10.18 (b) . 10.18 (a) of range7-10 KEV magnified.
  • 10.4.8 XRP analysis
  • 10.4.9 Thermal analyses
  • Fig 10.19. XRF spectrum of praseodymiumcopper oxalate mixed crystal.
  • Fig.10.20 TGA plot of the mixed crystal praseodymium copper oxalate
  • 10.5 Conclusion
  • Fig. 10.21. DTA plot of praseodymium copper oxalate mixed crystal
  • 11. RARE EARTH (Sm, Nd, Pr) COPPER OXALATE MIXED CRYSTALS A GENERAL DISCUSSION
  • 11.1 Introduction
  • 11.2 Discussion
  • 11.2 1 Growth effects
  • 11.2.2 Morphology
  • Schematic diagram showing differentzones of crystallization.
  • Voids in the crystals
  • Spherulites
  • Etching
  • 11.2 3 Characterization
  • Table 11.1 ASSIGNMENTS OF IR AND RAMAN BAND FREQUENCIES (cm
  • 11.3 Conclusion
  • 11.4 Scope of the work
  • APPENDIX LIESEGANG RING PHENOMENA DURING THE GROWTH OF RARE EARTH BARIUM MOLYBDATE MIXED CRYSTALS
  • a.1. Introduction
  • a.2. Pattern of rings
  • a.3. Factors related to Liesegang ring formation
  • a.4. Theories of Liesegang phenomena
  • a.5. Experimental
  • a.6. Effect of various parameters
  • a.6.1 Variation of outer electrolyte
  • a.6.2 Variation of inner electrolyte
  • a.6.3 pH variation of gel medium
  • Fig. Captions
  • PLATE IX
  • a.7. Experimental verification
  • a.7.1 Relation between diffusion depth (x) and the width of rings (AX)
  • a.7.2 Effect of ageing
  • a.8. Discussion
  • Table - a.1 VARIATION OF Δx WITH x (FOR pH = 5) Outer electrolytes - IM neodymium nitrate + cupric nitrate, Inner electrolyte - 1Sstandard solution.
  • Table- a.2 VARIATION OF Δx WITH x (FOR pH =4)
  • Fig. (a) Effect of pH on ring spacing
  • a.9. Conclusion
  • References