• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 310
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • DEDICATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • I. INTRODUCTION
  • II. POLYMERIC LIGANDS AND METAL COMPLEXES: AN OVERVIEW
  • 1.Historical background
  • 2 Macromolecular effects on complexation
  • 3 Types of ligands
  • a Polymer supported amino ligands
  • b. Polymer supported amino acids
  • 4 Physicochemical characterisations of polymeric ligands and metal complexes
  • a) Infrared spectroscopy
  • Fig. II.1. Infrared NH2 absorptions of resins crosslinked with 8 mole% of NNMBA
  • b) Electronic spectroscopy
  • c) Electron spin resonance spectroscopy
  • Fig. II.2. ESR spectra of Cu4 (II) complex of partially quarternized PVP
  • d) Magnetic moment studies
  • 5. Applications of polymer metal complexes
  • a) Separation of metal ions and organic molecules
  • Fig. II.3. Adsorption of metal ions on iminodiaceticacid resin
  • b) Catalytic activity of polymer metal complexes
  • c) Other important applications of polimer metal complexes
  • III. COMPLEXES OF CROSSLINKED POLYACRYLAMIDE SUPPORTED AMINES
  • 1 Effect of macromolecular characteristics on complexation of amino ligands
  • a) Preparation of DVB-, NNMBA-, TEGDMA-, EGDMA-, BDDMA- and HDDA-crosslinked polyacrylamides
  • (i) Preparation of divinylbenzene (DVB) -crosslinked polyacrylamides
  • (ii) Preparation of N, N1-methylene-bis-acrylamide (NNMBA) -crosslinked polyacrylamides
  • (iii) Preparation of triethyleneglycol dimethacrylate (TEGDMAI-crosslinked polyacrylamides
  • (iv) Preparation of ethyleneglycol dimethacrylate (EGDMA) crosslinked polyacrylamides
  • (v) Preparation of butanediol dimethacrylate (BDDMAI crosslinked polyacrylamides
  • (vi) Preparation of hexanediol diacrylate (HDDA) crosslinked polyacrylamides
  • b) Preparation of Poly (N-2-aminoethyl acrylamide) s
  • c) Amino capacity of poly (N-2-aminoethyl acrylamide) s
  • Fig. III.1. Amino capacity of DVB-, NNMBA- and TEGDMA crosslinked polyacrylamides for varying extents of crosslinking.
  • Fig. III.2. Amino capacity of EGDMA-, BDDMA- and HDDA crosslinked polyacrylamides for varying extents of crosslinking.
  • d) Complexation of amino polyacrylamides
  • Fig. III.3. Metal ion intake of 2-20 mole% DVB crosslinked polyacrylamide amines.
  • Fig. III.4. Metal ion intake of 2-20 mole% NNMBA crosslinked polyacrylamide amines.
  • Fig. III.5. Metal ion intake of 2-20 mole% TEGDMA crosslinked polyacrylamide amines.
  • Table III.1 Metal ion intake of DVB-, NNMBA- and TEGDMA crosslinked polyacrylamide amines
  • Fig. III.6. Cr (III) ion intake of DVB-, NNMBA- and TEGDMA- crosslinked polyacrylamides for varying extents of crosslinking.
  • Fig. III.7. Cr (III) ion intake of EGDMA BDDMA and HDDA crosslinked polyacrylamides for varying extents of crosslinking.
  • Fig. III.8. Metal ion intake of 2-20 mole% EGDMA crosslinked polyacrylamide amines.
  • Fig. III.9. Metal ion intake of 2-20 mole% BDDMAcrosslinkedpolyacrylamide amines.
  • Fig. III.10. Metal ion intake of 2-20 mole% HDDA crosslinked polyacrylamide amines.
  • Table III.2 Metal ion intake of EGDMA-, BDDMA- and EDDA- crosslinked polyacrylamide-derived &no ligands
  • e) Time course of complexation
  • Fig. III.11. Time course of complexation of 4% DVB crosslinked polyacrylamide amine.
  • Fig. III.12. Time course of complexation of 4% NNMBA crosslinked polyacrylamide amine.
  • Fig. III.13. Time course of complexation of 4% TEGDMA crosslinked polyacrylamide amine.
  • f) Kinetics of complexation of polymer supported amines towards Cr (III) ions.
  • Fig. III.14. Kinetic curve for complexation of 2% DVB crosslinked polyacrylamide supported amine towards Cr (III) ions
  • Fig. III.15. Kinetic curve for complexation of 2% NNMBA crosslinked polyacrylamide supported amine towards Cr (III) ions.
  • Fig. III.16. Kinetic curve for complexation of 2% TEGDMA crosslinked polyacrylamide supported amine1.5 towards Cr (III) ions.
  • Table III.3. Kinetic parameters of Cr (III) complexation with crosslinked polyacrylamide amine
  • g) pH Dependence of complexation of DVB-, NNMEA and TEGDMA-crosslinked amines.
  • Table III.4. pH Dependence of complexation of 4% DVB-, NNMBA- and TEGDMA- crosslinked polyacrylamide amines
  • h) Distribution coefficient of complexation of various amino ligands at different pH.
  • Fig. III.17. pH Dependence of complexation of 4% DVB crosslinked polyacrylamide supported amine
  • Fig. III.18. pH Dependence of complexation of 4% NNMBA crosslinked polyacrylamide supported amine
  • Fig. III.19. pH Dependence of complexation of 4% TEGDMA crosslinked polyacrylamide supported amine
  • Table III.5. Distribution coefficients of 2% DVB-, 2% NNMBA- and 2% WDMA- crosslinked polyacrylamide amines.
  • i) Recyclability of polyacrylamide supported amines
  • Table III.6. Recyclability of 2% DVB-, 2% NNMBA- and 2%TEGDMA- crosslinked polyacrylamide aminocomplexes
  • j) Swelling characteristics of polyacrylamide amino ligands and corresponding Cr (III) complexes.
  • Table III.7. EWCs of DVB-, NNMBA- and TEGDMA- crosslinked polyacrylamide amines and correspondingCr (III) complexes.
  • Fig. III.20. EWCs of various DVB-, NNMBA- and TEGDMA crosslinked polyacrylamide amines and corresponding Cr (III) complexes.
  • Fig. III.21. EWCs of various DVB- crosslinked polyacrylamide amines and corresponding Cr (III) complexes.
  • Fig. III.22. EWCs of various NNMBA- crosslinked polyacrylamide amines and correspondingCr (III) complexes.
  • Fig. III.23. EWCs of various TEGDMA- crosslinked polyacrylamide amines and corresponding Cr (III) complexes.
  • Table III.8. EWCs of various EGDMA-, BDDMA- and HDDA crosslinked polyacrylamide amines and corresponding Cu (II) complexes
  • Fig. III.24. EWCs of various EGDMA-, BDDMA- and HDDA crosslinked polyacrylamide amines and corresponding Cr (III) complexes.
  • 2. Physicochemical characterisation of crosslinked amino polyacrylamides and metal complexes
  • a) Infrared spectral analysis of polymer supported amines and complexes.
  • Fig. III.25a.IR spectra of DVB-crosslinked polyacrylamide
  • Fig. III.25b.IR spectra of NNMBA -crosslinked polyacrilamide
  • Fig. III.25c.IR spectra of TEGDMA -crosslinked polyacrylamide
  • Fig. III.25d.IR spectra of EGDMA -crosslinked polyacrylamide
  • Fig. III.25e.IR spectra of BDDMA -crosslinked polyacrylamide
  • Fig. III.25f.IR spectra of HDDA -crosslinked polyacrylamide
  • b) Electronic spectral analysis of crosslinked polyacrylamide supported amino complexes
  • Fig. III.26 a.Electronic spectra of DVB- crosslinked polyacrylamide amino complexes of (1) Cu (I1) (2) Cr (III), (3) Fe (II1) and (4) Mn (I1) ions.
  • Fig. III.26b.Electronic spectra of NNMBA- crosslinked polyacrylamide amino complexes of (1) Cu (II), (2) Cr (III), (3) Fe (II1) and (4) Mn (I1) ions.
  • Fig. III.26c.Electronic spectra of TEGDMA- crosslinked polyacrylamide amino complexes of (1) Cu (II), (2) Cr (III), (3) Fe (II1) and (4) Mn (I1) ions.
  • Table III.9 Electronic spectral data of 2% DVB- 2%NNMBA- and 2% TEGDMA- crosslinked aminopolyacrylamides
  • Fig. III.10. Effect of extent of crosslinking on the absorption maxima of Cu (I1) complexes of DVB-, NNMBA- and BDDMA- crosslinked polyacrylamides
  • c) EPR spectra of polyacrylamide supported amino -Cu (II) complexes.
  • Fig. III.27c.EPR spectra of Cu (II) complexes of 2-20 mole% of BDDMA-crosslinking.
  • Fig. III.27d.EPR spectra of Cu (II) complexes of 2-20 mole% of HDDA-crosslinking.
  • Table III.11. EPR data of Cu (II) complexes of EGDMA-, BDDMA-tHDDA- AND TEGDMA-crosslilnked polyacrylamide amines.
  • d) Magnetic moment measurements of polymer supported amino complexes.
  • Table III.12. Magnetic susceptibility measurements of 2% DVB-, 2% NNMBA- and 2% TEGDMA-crosslinked polyacrylamideamino complexes
  • e) Morphological study by scanning electron microscopy.
  • f) Thermal studies of crosslinked polyacrylamides with varying crosslinking agents and of the corresponding Cr (III) complexes.
  • Fig. III.29a. TG curves of 2% DVB- crosslinked polyacrylamide amine and complexes with varying amounts of Cr (III)
  • Fig. III.29b.TG curves of 2% NNMBA- crosslinked polyacrylamide amine and complexes with varying amounts of Cr (III)
  • Fig. III.29c.TG curves of 2% TEGDMA- crosslinked polyacrylamide amine and complexes with varying amounts of Cr (III)
  • Table III.13. Phenomenological data of the thermal decomposition of DVB-, NNMBA- and TEGDMA crosslinked polyacrylamides and complexes with varying extents of Cr (III)
  • Table III.14a kinetic data of the thermal decomposition of 2% DVB- crosslinked aminopolyacrylamide with varying extents of complexed Cr (III) ions
  • Table III.14b Kinetic data of the thermal decomposition of 2% NNMBA- crosslinked amino polyacrylamide with varying extents of complexed Cr (III) ions
  • Table III.14c Kinetic data of the thermal decomposition of 2% TEGDMA- crosslinked amino polyacrylamide with varying extents of complexed Cr (III) ions
  • IV. COMPLEXES OF CROSSLINKED POLYACRYLAMIDE SUPPORTED AMINO ACIDS
  • 1. Poly (6 N-acryloyl arginine)
  • Fig. IV.1. Amino acid capacity of DVB- and NNMBA crosslinked polyacrylamide supported arginine for varying extents of crosslinking agents.
  • 2. Poly (N-acryloyl glycine)
  • Fig. IV.2. Amino acid capacity of DVB- and NNMBA crosslinked polyacrylamide supported glycine for varying extents of crosslinking agents.
  • 3. Poly (N-acryloyl aspartic acid)
  • Fig. IV.3. Amino acid capacity of DVB- and NNMBA crosslinked polyacrylamide supported aspartic acid for varying extents ofcrosslinking agents.
  • 4. Complexation and metal ion intake of polymer supported amino acids.
  • Table IV.1. Metal ion intake of crosslinked polyacrylamide supported arginine
  • Table IV.2. metal ion intake of crosslinked polyacrylamide supported glycine
  • Table IV.3. Metal ion intake of crosslinked polyacrylamide supported aspartic acid
  • 5. pH Dependence of complexation of DVB- and NNMBA-polyacrylamide supported arginine.
  • Table IV.4. pH dependence of complexation of 4% crosslinked polyacrylamide supported aminoacids
  • Fig. IV.4. Variation of metal ion intake with pH of 4%DVB- crosslinked polyacrylamide supported amino acids.
  • 6 Recyclability of polyacrylamide supported amino acids
  • Table IV.5. Recyclability of crosslinked polyacrylamide supported arginine
  • 7 Swelling characteristics of complexed and uncomplexed amino acid incorporated polyacrylamides
  • Table IV.6. Equilibrium water content of crosslinked polyacrylamide supported arginine and the corresponding Cu (II) complexes
  • 8. IR analysis of polymer supported amino acids and the corresponding Cu (II) complexes.
  • Fig. IV.5a. IR spectra of (1) 2% DVB- crosslinked polyacrylamide supported arginine (2) Cu (II) complex
  • Fig. IV.5a. IR spectra of (1) 2% NNMBA- crosslinked polyacrylamide supported arginine (2) Cu (II) complex
  • 9 Electronic spectral studies of metal complexes of crosslinked polyacrylamide supported amino acids.
  • Table IV.7. Electronic spectral data of arginine incorporated crosslinked polyacrylamide metal complexes.
  • Fig. IV.6a. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Cu (II) complex.
  • Fig. IV.6b. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Co (II) complex
  • Fig. IV.6c. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Cr (III) complex
  • Fig. IV.6d. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Fe (III) complex
  • Fig. IV.6e. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Ni (II) complex
  • Fig. IV.6f. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Mn (II) complex
  • Table IV.8. Variation in d-d transition of Cu (II) complexes with monomer ratio of crosslinking agents
  • 10 EPR spectral analysis of Cu (II) complexes of polyacrylamide supported arginine and glycine.
  • Table IV.9. EPR spectral data of Cu (II) complexes of polyacrylamide supported amino acids
  • Fig. IV.7a. EPR spectra of Cu (II) complexes of 2-20 mole% DVB- crosslinked polyacrylamide supported arginine.
  • Fig. IV.7b. EPR spectra of Cu (II) complexes of 2-20 mole% DVB- crosslinked polyacrylamide supported glycine.
  • Fig. 1V.7c. EPR spectra of Cu (II) complexes of 2-20 mole% NNMBA- crosslinked polyacrylamide supported arginine.
  • 11 Thermal analysis of the Cu (II) complexes of NNMBA-crosslinked polyacrylamide arginine.
  • Table IV. 10. Phenomenological data of thermal decomposition of NNMBA- crosslinked polyacrylamide supported Arginine Cu (II) complexes
  • Fig. IV.8. TG curves of Cu (II) complexes of 2-20 mole%NNMBA- crosslinked polyacrylamide supported arginine.
  • Table IV.ll. Kinetic data of thermal decomposition of NNMBA-AA-Arg-Cu (II) complexes for varying mole% of crosslinking
  • 12. Scanning electron micrographs of various polymer supported amino acids and corresponding Cu (II) complexes.
  • 13. Complexation of DVB-crosslinked polystyrene supported amino acids.
  • a) 2% DVB-crosslinked polystyrene supported glycine, arginine and aspartic acid.
  • b) Complexation parameters of polystyrene supported amino acids.
  • c) Characterisation of polyacrylamide supported amino acids and Cu (II) complexes by IR and EPR spectroscopy, thermal and SEM techniques.
  • Spectral analysis
  • Fig. IV.10. IR analysis of 1.DVB- crosslinked chloromethyl polystyrene 2.DVB- polystyrene supported arginine and 3. The corresponding Cu (II) complex
  • Fig. IV.11. EPR spectra of 2% DVB- crosslinked polystyrene supported arginine-Cu (II) complex.
  • Thermal analysis of polystyrene supported arginine and the corresponding Cu (II) complex
  • Fig. IV.12a.Thermogram of 2% DVB- crosslinked polystyrene supported arginine
  • Fig. IV.12b.Thermogram of 2% DVB- crosslinked polystyrene supported arginine -Cu (II) complex
  • Table IV.13. Phenomenological data of the thermal decomposition of DVB-crosslinked polystyrene supported arginine (DVB-PS-Arg) and the corresponding Cu (II) complex.
  • Table IV.14. Kinetic data of thermal decomposition of DVB- crosslinked polystyrene supported arginine and corresponding Cu (II) complex.
  • 14. Synthesis and complexation of encapsulated amino acid ligand in polymer matrix.
  • a) Encapasulated glycine.
  • b) Complexation of encapsulated glycine and selectivity of the desorbed metal.
  • c) Characterisation of the encapsulated glycine Cu (II) complex by IR and electronic spectroscopy, thermal analysis and SEM technique.
  • Table IV.16. Electronic spectral data of glycine encapsulated NNMBA- crosslinked polyacrylamide complexes.
  • Thermogravimetric studies of encapsulated glycine and complexes
  • Table IV.17. Phenomenological data of the thermal decomposition of the encapsulated system
  • Table IV.18. Kinetic data of thermal decomposition of glycine encapsulated system.
  • Fig. IV.14a. TGA and DTG of glycine encapsulated in NNMBA- crosslinked polyacrylamide.
  • Fig. IV.14b. TGA and DTG of Cu (II) complex of glycine encapsulated in NNMBA- crosslinked polyacrylamide.
  • Scanning electron microscopy of encapsulated glycine and complexes
  • 15. Application of crosslinked polyacrylamide supported ligands and complexes.
  • a Separation of metal ions by column technique using crosslinked polyacrylamide amine.
  • b. Catalytic decomposition of H2O2 using various polymer metal complexes
  • i) Effect of polymer back bone on catalytic efficiency of Cu (II) complexes
  • ii) Effect of various metal complexes on catalytic decomposition of H2O2
  • iii) Phenomenological aspects of catalytic decomposition of H2O2
  • iv.) Reuse of the polymer metal complex in catalytic decomposition of H2O2
  • v) Time course of catalytic decomposition of H2O2
  • Fig. IV.16a. Time-course of catalytic decomposition of H2O2 in presence of DVB-, NNMBA- and TEGDMA-crosslinked polyacrylamide aminoCu (II) complexes.
  • Fig. IV.16b. Time-course of catalytic decomposition of H2O2 in presence of EGDMA-, BDDMA- and HDDA- crosslinked polyacrylamide amino Cu (II) complexes.
  • V. EXPERIMENTAL
  • 1. General
  • a) Materials
  • b) Instrumental
  • 1. IR spectroscopy
  • 2. Electronic spectroscopy
  • 3. EPR spectroscopy
  • 4. Scanning electron microscopy
  • 5. Magnetic susceptibility
  • 6. Thermogravimetric analysis
  • 7. Microanalysis
  • 2. Preparation of crosslinked polyacrylamides
  • a) Polyacrylamides crosslinked with divinylbenzene
  • b) Polyacrylamides crosslinked with N, N-methylene-bis-acrylamide
  • c) Polyacrylamides crosslinked with triethylene glycol, dimethacrylate
  • d) Polyacrylamides crosslinked with ethyleneglycol dimethacrylate.
  • e) Polyacrylamides crosslinked with butanediol dimethacrylate
  • f) Polyacrylamides crosslinked with hexanediol diacrylate
  • 3. Preparation of aminopolyacrylamides.
  • 4. Estimation of amino capacity in poly (N-2 aminoethylacrylamide) s
  • 5. Preparation of amino acid incorporated polyacrylamides
  • a) Preparation of poly (E, -N-acryloyl arginine) and estimation of arginine functionality in the polymer
  • b) Preparation of poly (N-acryloyl glycine) and estimation of the amino acid functionality in the polymer
  • c) Preparation of poly (N-acryloyl aspartic acid) and estimation of amino acid functionality
  • 6. Preparation of polystyrene supported amino acids
  • 7. Preparation of glycine encapsulated NNMBA crosslinked polyacrylamide
  • 8. Complexation of polyacrylamide supported amines and amino acids.
  • a) Preparation of polymer metal complexes.
  • b) Estimation of metal ion intake.
  • c) Swelling measurements
  • d) Recyclability of complexed resins
  • e) pH Dependence of complexation.
  • f) Distribution coefficient
  • g) Time course of complexation
  • h) Kinetics of complexation
  • 9. Application of polymeric ligands and metal complexes
  • a) Separation of metal ions by continuous flow process.
  • b) Catalytic activity of metal complexes in decomposition of H2 O2.
  • VI. SUMMARY AND CONCLUSION
  • REFERENCES