• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 261
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE 1
  • CERTIFICATE-2
  • Preface
  • ACKNOWLEDGEMENT
  • CONTENTS
  • 1 Introduction
  • Part-A: Ferroelectric ceramics- A review
  • 1.1 Introduction
  • 1.2 Advanced ceramics
  • 1.3 Electronic ceramics
  • 1.4 Niobates and related relaxor ferroelectrics
  • 1.5 Ferroelectrics as electro-optic materials
  • 1.6 Ferroelectric devices
  • 1.7 Ferroelectric ceramics with tungsten bronze structure [TTB]
  • 1.8 Strontium barium niobate ceramics (SBN)
  • 1.9 Effect of alkali metal and rare earth metal doing on SBN ceramics
  • 1.10 Barium sodium niobate ceramics (BNN)
  • Part-B, Effect of Swift heavy ion irradiation on physical properties of materials
  • 1. 11 Introduction
  • 1. 12 Radiation effects in solids
  • 1.12.1 Excitation
  • 1. 13 Interaction of heavy ions with materials
  • 1.13. I Elastic interactions
  • 1.13.2 Inelastic interactions
  • 1.13.3 Knock-on atom displacement
  • 1. 14 Swift heavy ion based material science research at NSC, New Delhi
  • 1.14.1 On-line measurements
  • 1.14.2 In-situ measurements
  • 1.14.3 Effects of SHI on ceramic materials
  • 1.15 References
  • 2 Preparation of ferroelectric ceramics
  • 2. 1 Introduction
  • 2.2 Preparation of ferroelectric ceramics
  • 2. 2.1 Weighing and mixing
  • 2.2. 2 Dry and semidry pressing methods
  • 2.2.3 Die compaction
  • 2. 3 Sintering and densification process in practice
  • 2. 3. 1 Sintering process variables
  • 2.3.2 Control of heating schedule
  • Stage 1: Binder burtiout
  • Fig. 2. 2 show the photograph of high temperature fUmace using silicon carbideheating elements, on the right side the control unit, which uses a rnicroptoce~rb asedPID temperature control system.
  • Stage 2: Low temperature soak.
  • Stage 3: Heat-up to the sintering temperature
  • Stage 4: Isothermal sintering
  • Stage 5: Cooling
  • 2.3.3 Solid state reactions
  • 2.4 Calcination
  • 2. 5 Porous materials
  • 2. 6 Binder systems
  • 2. 6. 1 Mixing of the feed materials
  • 2.6. 2 Binder removal
  • 2.6. 3 Stage and mechanisms of thermal debinding
  • 2.6.4 Models of thermal debinding
  • 2.7 Sintering mechanisms
  • 2.8 Mixed powder sintering
  • 2.9 Enhanced solid state sintering
  • 2.10 Liquid phase sintering
  • 2.11 Preparation of strontium barium niobate ceramics (SBN)
  • 2.12. 1Preparation of [SrU0.6, Bau0.39]4-2x, Li2+x, Eux, Nb10O30 and [SrU.61Ba0.39]4-2x, Li2+x, NdxNbI0O30
  • 2.13 Preparation of barium niobate ceramics (BNN) and Ba3-2, Na4+x, Ndx, Nb10O30
  • 2.14 References
  • 3 Microstructural analysis of SBN and BNN ceramics
  • 3. 1 Introduction
  • 3.2 Scanning electron microscopy (SEM)
  • 3.3 Experimental technique
  • 3.4 Results and discussions
  • Fig. Caption 3.1
  • Fig. Caption 3.7
  • 3.4.1 Effects of alkali and rare earth ion in strontium barium niobate
  • Fig. Caption 3.13
  • 3.4.2 Microstructural development in BNN ceramics
  • Fig. Caption 3.19
  • Fig. Caption 3.25
  • 3. 5 Grain boundaries
  • 3.6 Grain growth
  • 3. 6.1 Occurance of grain growth
  • 3.6. 2 Mechanism and kinetics of grain growth
  • 3. 6 3 General kinetic formulation
  • 3.6. 4 Intrinsic mechanism
  • 3. 6. 5 Solute segregate
  • 3. 7 Grain growth and coarsening
  • 3. 8 Normal and abnormal grain growth
  • 3. 8. 1 Abnormal grain growth
  • 3.9 Importance of controlling grain growth
  • 3. 10 Effect of grain size on properties
  • 3. 11 References
  • 4 X-ray diffraction studies on strontium barium niobate Ceramics
  • 4. 1 Introduction
  • 4. 2 X-ray powder diffraction
  • 4. 3 Determination of crystal structure
  • 4. 4 Phase analysis
  • 4. 5 Experimental procedure
  • 4.6 Results and discussions
  • 4.7 References
  • 5 X- ray diffraction studies on barium sodium niobate Ceramics
  • 5. 1 Introduction
  • 5.2 Experimental method
  • 5. 3 Results and discussion
  • 5.3. 1 Broadened Lines
  • 5. 4 References
  • 6 Dielectric properties of SBN and BNN ceramics
  • 6.1 Introduction
  • 6.2 Ferroelectric ceramics
  • 6.3 Properties of ferroelectrics
  • 6.3.1 Dielectric constant and dielectric loss
  • 6.4 Dielectric measurement set up
  • 6.4. 1 Dielectric cell
  • Fig 6.4 Shows the ulelectric cell which was fabricated for dielectric measurements
  • 6. 5 Experimental procedure
  • 6. 6 Results and discussion
  • 6. 6. 1 Dielectric studies on SBN ceramics
  • 6.6.2 Dielectric studies on BNN ceramics
  • 6. 7 Ferroelectric phase transitions
  • 6.7. 1 Diffuse phase transitions
  • 6. 8 Dielectric loss factor for ferroelectric ceramics
  • 6.9 Dielectric conductivity
  • 6. 10 Dielectric relaxation in solids
  • 6.11 References
  • 7 Ion implantation and irradiation in ferroelectric ceramics
  • 7.1 Introduction
  • 7.2 Calculation of implantation range and damage distribution
  • 7.3 Distribution parameters: straggling, skewness and kurtosis
  • 7.4 Energy loss of SHI in materials
  • 7.5 Universal nuclear stopping powers
  • 7.6 Electronic stopping cross-sections
  • 7.7 Range of swift heavy ion beams
  • 7.8 Irraddiationn effect on BNN and SBN ceramics with Fe+ ion beam
  • 7.9 Results and discussion
  • 7.10 Irradiation of strontium barium niobate with Si+ ions
  • 7.11 References
  • 8 Structural and dielectric modification in BNN and SBN ceramic by Swift heavy ion irradiation
  • 8.1 Introduction
  • 8.2 SEM studies on swift heavy ion irradiated ferroelectric ceramics
  • 8.2.1 SEM studies on BNN ceramics after irradiation with Fe+ ions
  • Fig. 8.1 SEM images showing the microstructural changes after irradiation with 100MeV ~d ions with a flueoce of loJ3p articles per cm2
  • 8.3 Microstructural changes on SBN after Si + ion irradiation
  • Fig. 8. 2 SEM images showin the rnicroshructuxal changes &r irradiation B with 100 MeV ~ iio+ns with a fluence of 10 particles per cm2
  • Fig. 8. 3 SEM images showing the microstructura~ changes after Irradiation with 100MeV Sii Ions with a fluence of 1013 particles per cm?
  • Fig. 8. 4 $EM images showm the microstructural changes after irradiation with 100MeV Si+ h i sw ith a flueace of 10? 3 particles per cm2
  • 8.4 X-ray analysis on irradiated materials
  • 8.5 X-ray diffraction studies on BNN and SBN ceramics
  • 8.6 Silicon induced structural variations in SBN ceramics
  • 8.7 Effect of Fe - ion irradiation on dielectric properties of BNN ceramics
  • 8.7.1 Experimental details
  • 8.7.2 Results and discussions
  • 8.8 References
  • 9 Summary and conclusions
  • 9.1 Summary and conclusions
  • 9.2 Scope for further work.