• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 190
 
Full Screen

  • Title
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • ABBREVIATIONS
  • CONTENTS
  • 1. Introduction and Objectives
  • 1.1 Introduction and Objectives
  • 1.2 Organization of the Thesis
  • References
  • 2. Recent Trends in Solidifies Peptide Synthesis
  • 2.1 Introduction
  • 2.2 Principles of Merrifield Peptide Synthesis
  • 2.3 The Role of Solid Support
  • 2.4 Resin-peptide Linkages
  • 2.5 Protecting Groups
  • 2.6 Coupling Reagents
  • 2.7 Purification and Characterisation of Peptides
  • 2.8 Problems Associated with SPPS
  • 2.9 Polymer Effect
  • 2.10 Aggregation of Peptide
  • References
  • 3. Synthesis and Characterisation of GDMA-PMMA Polymer support
  • 3.1 Introduction
  • 3.2 Results and Discussion
  • 3.2.1 Synthesis of GDMA-cross linked polystyrene (GDMA-PMMA) support
  • 3.2.2 Characterisation of GDMA-PMMA support
  • 3.2.3 Functional Group Interconversion
  • 3.2.4 Swelling and Stability Studies of Polymer Support
  • 3.2.5 Time Dependent Incorporation of C-terminal Amino Acid
  • 3.2.6. Time-dependent Fmoc-deprotection
  • 3.2.7 Comparative Synthesis of Peptides
  • 3.2.8 Synthesis of Leu-Ala-Gly-Val
  • 3.2.9 Synthesis of Ala-Ala-Ala-Ala
  • 3.2.10 Synthesis of Leu-Gly-Ala-Leu-GIy-Ala
  • 3.2.11. Conclusion
  • 3.3 Experimental
  • 3.3.1 Materials
  • 3.3.2 Methods for the purification and detection of peptides
  • 3.3.2.1 Column chromatography
  • 3.3.2.2 Thin layer chromatography
  • a) Ninhydrin
  • b) Iodine
  • c) Starch-potassium iodide test
  • d) Sakaguchi reagent
  • 3.3.2.3 Amino acid analysis
  • 3.3.2.4 Matrix Assisted Laser Desorption / Ionization Mass Spectroscopy
  • 3.3.2.5 Circular Dichroism
  • 3.3.3 Synthesis of Fmoc-amino acids using fluorenyl methyl chloroformate
  • 3.3.4 Synthesis of Fmoc-amino acids using fluorenyl methyl succinimidyl carbonate
  • 3.3.5 Synthesis of GDMA-cross linked polystyrene (GDMA PMMA) support
  • 3.3.5.1 Bulk polymerization
  • 3.3.5.2 Suspension polymerization
  • 3.3.6 Swelling Studies
  • 3.3.7 Stability Studies
  • 3.3.8 Chloro-2% GDMA-PMMA resin
  • 3.3.9 Amino-2% GDMA-PMMA resin
  • 3.3.10 Esterification of Fmoc-amino acid to polymer support using MSNT
  • 3.3.11 Time-dependent Fmoc-deprotection
  • 3.3.12 Time dependent incorporation of amino acids at different: temperatures
  • 3.3.13 Detachment of peptide from the GDMA-PMMA resin
  • 3.3.14 General procedure for peptide synthesis
  • 3.3.15 Synthesis of Leu-Gly-Ala-Val
  • 3.3.16 Synthesis of Ala-Ala-Ala-Ala
  • 3.3.17 Synthesis of Leu-Gly-Ala-Leu-Gly-Ala
  • References
  • 4. Synthesis of Neurotensin Peptide Analogues on Hydrophilic Polymer Support
  • 4.1 Introduction
  • 4.2 Results and Discussion
  • 4.2.1 Synthesis of Neurotensin Peptide Analogizes on PS-HDODA and PS-TTEGDA Resins Using Boc-Chemistry
  • 4.2.1.1 Boc-chemistry of peptide synthesis
  • 4.2.2 Synthesis of neurotensin (1-13) on PS-HDODA and PS-TTEGDA supports (Glu-Leu-7yrGlu-Asn-Lys-Pro Arg Arg-Pro-lyr-Ile-Leu-OH)
  • 4.2.3 Synthesis of Neuromedin On PS-HDODA and PS-TTEGDA Supports (Tyr--Ile- Lys- Ile-Pro-Leu-OH)
  • 4.2.4 Synthesis of Xenopsin on PS -HDODA and PS-TTEGDA SUPPORT (Glu-Gly-Lys Arg-Pro-Trp-lle Leu-OH)
  • 4.3 Synthesis of Neurotensin Peptide Analogues by Using Fmoc Chemistry
  • 4.4 Synthesis of Aminomethyl GDMA-PMMA
  • 4.4.1 Chloro-2% GDMA-PMMA resin
  • 4.4.2 Amino-2% GDMA-PMMA resin
  • 4.4.3 Esterification of Fmoc-amino acid to polymer support using MSNT
  • 4.4.4 Synthesis of 4- (4-hydroxymethyl-3-methoxyphenoxy) butylamidomethyl 2% GDMA -PMMA support
  • 4.4.5 Fmoc-deprotection
  • 4.4.6 Synthesis of neurotensin (1-13) (Glu-Leu-Tyr Glu-Asn-.Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu-OH)
  • 4.4.7 Synthesis of Neuromedin (Tyr-lle- Lys- lle-Pro Leu-OH)
  • 4.4. 8 Synthesis of Xenopsin on GDMA-PMMA Support (Glu-Gly-Lys-Arg-Pro-Trp-lle-Leu-OH)
  • 4.5 Experimental
  • 4.5.1 Materials
  • 4.5.2 Preparation of amino acid derivatives
  • 4.5.2.1 Boc-amino acids (Schnabels method)
  • 4.5.2.2 Preparation of 1-Hydroxybenzotriazole (HOBt)
  • 4.5.3 General procedure for solid phase peptide synthesis
  • 4.5.4 Synthesis of neurotensin on PS-HDODA and PS-TTEGDA supports (Glu-Leu-TyrGlu-Asn-Lys-Pro Arg-Arg-Pro-Tyr-Ile-Leu-OH)
  • 4.5.5 Synthesis of Neuromedin on PS-HDODA and PS-TTEGDA supports (Tyr-Ile- Lys- Ile-Pro-Leu-OH)
  • 4.5.6 Synthesis of Xenopsin on PS-HDODA and PS-TTEGDA supports (Glu-Gly-Lys-.Arg-Pro-Trp-Ile-Leu-OH)
  • 4.6 Synthesis of Neurotensin Based on Fmoc-Chemistry
  • 4.6.1 Preparation of 4- (4-hydroxymethyl-3-methoxyphenoxy) butyl amidomethyl resin
  • 4.6.2 Estimation of hydroxyl group in HMPB resin
  • 4.6.3 Preparation of Fmoc-Leu -O-CH2-C6H3 (OCH3) -O- (CH2) s NHCO--CH2-C6H4-resin
  • 4.6.4 Esterification of Fmoc-amino acid to polymer support using MSNT
  • 4.6.5 Estimation of amino group in the resin
  • 4.6.6 Synthesis of neurotensin on GDMA-PMMA support by Fmoc chemistry (Glu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-ProTyr-Ile-Leu-OH)
  • 4.6.7 Synthesis of NEUROMEDIN on GDMA-PMMA support by Fmoc chemistry (Tyr-Ile- Lys- Ile-Pro-Leu-OH)
  • 4.6.8 Synthesis of Xenopsin GDMA-PMMA support by Fmoc chemistry (Glu-Gly- Lys Arg-Pro-Trp-Ile-Leu-OH)
  • References
  • 5. Synthetic Peptide as a Tool for Bioassey
  • 5 Introduction
  • 5.1 Methodology and interpretation
  • 5.1.1 Isolation of native neurotensin from controlled and diabetic: rats
  • 5.1.2 Purification of isolated lyophilized crude native neurotensin
  • 5.1.3 Concentration of neurotensin isolated from brainstem of controlled and diabetic rats.
  • 5.1.4 Concentration of neurotensin isolated from cerebral cortex of controlled and diabetic rats
  • 5.1.5 Concentration of neurotensin isolated from hypothalamus of controlled and diabetic rats
  • References
  • 6. Conclusion