• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 223
 
Full Screen

  • TITLE
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • LIST OF NOTATIONS AND ABBREVIATIONS
  • 1 INTRODUCTION
  • 1.1 Chemical modification
  • 1.1.1 Attachment of pendant groups
  • 1.1.1a Hydrogenation
  • 1.1.1b Halogenation
  • 1.1.1c Hydrohalogenation
  • 1.1.1d Epoxidation
  • 1.1.1e Carbenr addition
  • 1.1.1f Iiydrosilylation
  • 1.1.1g Sulphonation, carboxylation and phosphonylation
  • 1.1.1h ENPCAF modification
  • 1.1.1i Maleic derivatives
  • 1.1.1j Ene reaction
  • 1.1.2 Grafting
  • 1.1.2a Grafting a polymer on the rubber molecule
  • 1.1.3 Bond rearrangement reactions
  • 1.1.3.a Cyclisation
  • 1.1.3.b Isomerisation
  • 1.1.4 Other Modifications
  • 1.1.4.a Depolynierisation
  • 1.2 Blending of elastomers
  • 1.2.1 Reasons for blending
  • 1.2.2 Factors affecting properties of blend
  • 1.2.2.a Distribution offiller between elastomers
  • 1.2.2.b Distribution of plasticiser between elastomers
  • 1.2.2.c Distribution ofsoluble contpourtdirtg ingredients
  • 1.2.3 Thermodynamic criteria for miscibility
  • 1.2.4 Compatibilisation
  • 1.2.4.a Techniques of compatibilisation
  • 1.2.4.b Use of block or graft copolymer
  • 1.2.4.c Compatibilisation by in-situ reaction
  • 1.2.4.d Compatibilisation by block and graft copolymers- basic features
  • 1.2.4.e Theories of compatibilisation
  • 1.2.5 Characterisation of the compatibilised blends
  • 1.2.6 Compatibilisation studies on rubber-rubber blends
  • 1.3 Scope of the present work
  • References
  • 2 MATERIALS AND EXPERIMENTAL TECHNIQUES
  • 2.1 Materials
  • 2.1.1 Styrene butadiene rubber (SBR)
  • 2.1.2 Polychloroprene rubber (CR)
  • 2.1.3 Nitrile rubber (NBR)
  • 2.1.4 Natural rubber (NR)
  • 2.1.5 Solvents
  • 2.1.6 Chemicals and fillers
  • 2.2 Preparation of dichlorocarbene modified styrene butadiene rubber (DCSBR)
  • 2.3 Estimation of chlorine content of the polymer
  • 2.4 Preparation of elastomers and elastomer blends
  • 2.4.a NR/DCSBR blends
  • 2.4.b SBR/NBR blends
  • 2.4.c SBR/CR blends
  • 2.5 Processing characteristics
  • 2.5.1 Monsando rheomester
  • 2.6 Preparation of vulcanised samples
  • 2.7 Characterisation studies
  • 2.7.1 H FTNMR studies
  • 2.7.2 FTIR
  • 2.7.3 Gel permeation chromatography
  • 2.8 Thermal analysis
  • 2.8.1 Differential scanning calorimeter
  • 2.8.2 Thermogravimetry
  • 2.8.3 Dynamic mechanical thermal analysis
  • 2.9 Flammability behaviour
  • 2.9.1 Limiting oxygen index
  • 2.10 Scanning electron microscopy studies
  • 2.11 Cross link density determination
  • 2.11.a From mechanical measurements
  • 2.11.b From solvent swelling
  • 2.12 Physical test methods
  • 2.12.1 Modulus, tensiles trength arid elorigation at break
  • 2.12.2 Tear resistance
  • 2.12.3 Hardness
  • 2.12.4 Abrasiorr resislarrce
  • 2.12.5 Compression sel
  • 2.12.6 Rebound resiliertce
  • 2.13 Degradation studies
  • 2.13.1 Ozone cracking
  • 2.13.2 Thermal ageing
  • 2.13.3 Oil ageing
  • References
  • 3 PREPARATION AND CHARACTERISATION OF DICHLOROCARBENE MODIFIED STYRENE BUTADIENE RUBBER
  • 3.1 Introduction
  • 3.2 Effect of time and temperature on dichlorocarbene addition to SBR
  • 3.3 Characterisation of modified SBR
  • 3.3.1 FT H-NMR characterization
  • 3 3.2 FTIR characterization
  • 3.3.3 Gel permeation chromatography
  • 3.3.4 Differential scanning calorimetry
  • 3.3.5 Thermogravimetric analysis
  • 3.3.6 Flammability behavior
  • References
  • 4 VULCANISATION BEHAVIOUR, TECHNOLOGICAL PROPERTIES AND EFFECT OF DIFFERENT FILLERS ON DICHLOROCARBENE MODIFIED SBR.
  • 4.1 Introduction
  • 4.2 Vulcanisation behaviour of dichlorocarbene modified SBR
  • (a) Sulphur vulcanisation
  • (b) Metal oxide vulcanisation
  • (c) Thermovulcanisation
  • (d) Dicumyl peroxide vulcanisation
  • 4.3 Physical properties
  • 4.3.1 Stress-strain behaviour
  • 4.3.2 Air and oil ageing
  • 4.3.3 Ozone resistance
  • Fig. 4.7. Optical photographs of 10 b of ozone exposed (a) SBR, (b) modified SBR with 15%, (c) 20% and (d) 25% chlorinecontent.
  • 4.4 Effect of different fillers on sulphur cured 15% chlorine containing DCSBR.
  • 4.4.a Processing characteteristics
  • 4.4.b Effect of fillers on technological properties
  • References
  • 5 BLENDS OF NATURAL RUBBER AND DICHLOROCARBENE MODIFIED STYRENE BUTADIENE RUBBER
  • 5.1 Introduction
  • 5.2 Cure characteristics of NR / DCSBR blends
  • 5.3 Characterisation of blends
  • 5.3.1 DSC thermograms
  • 5.3.2 Scanning electron microscopy
  • Fig. 5.6. Scanning electron micrographs of 50150 NR/DCSBR blends: (a) 0, (b) 5, (c) 10 and (d) 15 phr SBR as compatibiliser.
  • 5.4 Effect of concentration of compatibilisers on technological properties of NR / DCSBR blends
  • 5.4.a Mechanical properties
  • 5.4.b Ageing resistance
  • 5.4.c Oil ageing
  • 5.5 Cross link density from swelling and stress-strain behaviour
  • References
  • 6 COMPATIBILISATION OF SBR / NBR BLENDS WITH DICHLOROCARBENE MODIFIED STYRENE BUTADIENE RUBBER
  • 6.1 Introduction
  • 6.2 Effect of chlorine content of dichlorocarbene modified styrene butadiene rubber on the miscibility and mechanical properties of SBR / NBR blends.
  • 6.2.1 Processing characteristics from rheometric data
  • 6.2.2 Characterisation of blend
  • 6.2.2.a Thermal analysis
  • 6.2.2.b Dynamic mechanical analysis
  • 6.2.3 Effect of compatibiliser on technological properties
  • Oil resistance
  • Ageing resistance
  • 6.2.4 Effect of chlorine content of compatibiliser on swelling behavior
  • (a) Swelling parameters
  • 6.2.5 Calculation of cross link density
  • (a) From swelling studies
  • (b) From stress-strain data
  • 6.3 Effect of concentration of DCSBR on the miscibility and mechanical properties of SBR / NBR blends
  • 6.3.1 Effect of concentration o f DCSBR on processing characteristics
  • 6.3.2 Characterisation of blends
  • 6.3.2.a Differential scanning calorimetry
  • 6.3.2.b FTIR analysis
  • 6.3.2.c Morphological studies
  • Fig. 6.17. SEM micrographs of 50150 SBFUNBR blend (a) withoutcompatibiliser (b) with 5 phr DCSBR (c) with 10 phr DCSBR
  • 6.3.3 Effect of concentration of compatibiliser on the swelling behavior
  • 6.3.4 Calculation of cross link density from stress-strain data
  • 6.3.5 Effect of concentration of compatibiliser on technological properties
  • 6.3.6 Different mechanical modeling for tensile strength variation of compatibilised blends
  • (a) Einstein Equation
  • (b) Mooney Equation
  • (c) Brodnyan Equation
  • (d) Guth Equation
  • (e) Kerner Equation
  • (f) Sato-Furukawa model
  • References
  • 7 EFFECT OF DIFFERENT FILLERS ON COMPATIBILISED AND UNCOMPATIBILISED SBR / NBR BLENDS
  • 7.1 Introduction
  • 7.2 Effect of different fillers on the processing characteristics
  • 7.2.1 (a) Effect of blend composition
  • (b) Effect of compatibiliser
  • 7.2.2 Effect of loading of fillers on technological properties
  • Fig. 7.5. Optical photographs of 10 h of ozone exposed (a) 10, (b) 20, (c) 30, (d) 40 phr carbon bIack filled 50150 compatibilised blend
  • 7.3 Effect of loading of carbon black and silica on swelling behaviour
  • 7.3.1 Swelling parameters
  • 7.3.2 Calculation of cross link density from swelling and stress-strain data
  • 7.3.3 Stress-strain data
  • References
  • 8 EFFECT OF DICHLOROCARBENEMODIFIED STYRENEBUTADlENE RUBBER INCOMPATIBILISATION OFSBWCR BLENDS
  • 8.1 Introduction
  • 8.2 Processing characteristics from rheometric data
  • 8.3 Characterisation of blends
  • 8.3.1 Thermal analysis
  • 8.3.2 FTIR analysis
  • 8.4 Effect of compatibiliser on technological properties
  • 8.5 Calculation of cross link density
  • (a) Stress-strain isotherms
  • (b) Swelling studies
  • 8.6 Effect of different fillers on compatibilised SBR / CR (50/50) blends
  • References
  • 9 SUMMARY AND CONCLUSION
  • APPENDIX
  • List of Publications
  • Dichlorocarbene Modification of Styrene-Butadiene Rubber.
  • Dichlorocarbene Modified SBR - Vulcanization Behaviour and Physical Properties