HOME
Search & Results
Full Text
Thesis Details
Page:
310
Full Screen
TITLE
CERTIFICATE
DECLARATION
DEDICATION
ACKNOWLEDGEMENT
CONTENTS
I. INTRODUCTION
II. POLYMERIC LIGANDS AND METAL COMPLEXES: AN OVERVIEW
1.Historical background
2 Macromolecular effects on complexation
3 Types of ligands
a Polymer supported amino ligands
b. Polymer supported amino acids
4 Physicochemical characterisations of polymeric ligands and metal complexes
a) Infrared spectroscopy
Fig. II.1. Infrared NH2 absorptions of resins crosslinked with 8 mole% of NNMBA
b) Electronic spectroscopy
c) Electron spin resonance spectroscopy
Fig. II.2. ESR spectra of Cu4 (II) complex of partially quarternized PVP
d) Magnetic moment studies
5. Applications of polymer metal complexes
a) Separation of metal ions and organic molecules
Fig. II.3. Adsorption of metal ions on iminodiaceticacid resin
b) Catalytic activity of polymer metal complexes
c) Other important applications of polimer metal complexes
III. COMPLEXES OF CROSSLINKED POLYACRYLAMIDE SUPPORTED AMINES
1 Effect of macromolecular characteristics on complexation of amino ligands
a) Preparation of DVB-, NNMBA-, TEGDMA-, EGDMA-, BDDMA- and HDDA-crosslinked polyacrylamides
(i) Preparation of divinylbenzene (DVB) -crosslinked polyacrylamides
(ii) Preparation of N, N1-methylene-bis-acrylamide (NNMBA) -crosslinked polyacrylamides
(iii) Preparation of triethyleneglycol dimethacrylate (TEGDMAI-crosslinked polyacrylamides
(iv) Preparation of ethyleneglycol dimethacrylate (EGDMA) crosslinked polyacrylamides
(v) Preparation of butanediol dimethacrylate (BDDMAI crosslinked polyacrylamides
(vi) Preparation of hexanediol diacrylate (HDDA) crosslinked polyacrylamides
b) Preparation of Poly (N-2-aminoethyl acrylamide) s
c) Amino capacity of poly (N-2-aminoethyl acrylamide) s
Fig. III.1. Amino capacity of DVB-, NNMBA- and TEGDMA crosslinked polyacrylamides for varying extents of crosslinking.
Fig. III.2. Amino capacity of EGDMA-, BDDMA- and HDDA crosslinked polyacrylamides for varying extents of crosslinking.
d) Complexation of amino polyacrylamides
Fig. III.3. Metal ion intake of 2-20 mole% DVB crosslinked polyacrylamide amines.
Fig. III.4. Metal ion intake of 2-20 mole% NNMBA crosslinked polyacrylamide amines.
Fig. III.5. Metal ion intake of 2-20 mole% TEGDMA crosslinked polyacrylamide amines.
Table III.1 Metal ion intake of DVB-, NNMBA- and TEGDMA crosslinked polyacrylamide amines
Fig. III.6. Cr (III) ion intake of DVB-, NNMBA- and TEGDMA- crosslinked polyacrylamides for varying extents of crosslinking.
Fig. III.7. Cr (III) ion intake of EGDMA BDDMA and HDDA crosslinked polyacrylamides for varying extents of crosslinking.
Fig. III.8. Metal ion intake of 2-20 mole% EGDMA crosslinked polyacrylamide amines.
Fig. III.9. Metal ion intake of 2-20 mole% BDDMAcrosslinkedpolyacrylamide amines.
Fig. III.10. Metal ion intake of 2-20 mole% HDDA crosslinked polyacrylamide amines.
Table III.2 Metal ion intake of EGDMA-, BDDMA- and EDDA- crosslinked polyacrylamide-derived &no ligands
e) Time course of complexation
Fig. III.11. Time course of complexation of 4% DVB crosslinked polyacrylamide amine.
Fig. III.12. Time course of complexation of 4% NNMBA crosslinked polyacrylamide amine.
Fig. III.13. Time course of complexation of 4% TEGDMA crosslinked polyacrylamide amine.
f) Kinetics of complexation of polymer supported amines towards Cr (III) ions.
Fig. III.14. Kinetic curve for complexation of 2% DVB crosslinked polyacrylamide supported amine towards Cr (III) ions
Fig. III.15. Kinetic curve for complexation of 2% NNMBA crosslinked polyacrylamide supported amine towards Cr (III) ions.
Fig. III.16. Kinetic curve for complexation of 2% TEGDMA crosslinked polyacrylamide supported amine1.5 towards Cr (III) ions.
Table III.3. Kinetic parameters of Cr (III) complexation with crosslinked polyacrylamide amine
g) pH Dependence of complexation of DVB-, NNMEA and TEGDMA-crosslinked amines.
Table III.4. pH Dependence of complexation of 4% DVB-, NNMBA- and TEGDMA- crosslinked polyacrylamide amines
h) Distribution coefficient of complexation of various amino ligands at different pH.
Fig. III.17. pH Dependence of complexation of 4% DVB crosslinked polyacrylamide supported amine
Fig. III.18. pH Dependence of complexation of 4% NNMBA crosslinked polyacrylamide supported amine
Fig. III.19. pH Dependence of complexation of 4% TEGDMA crosslinked polyacrylamide supported amine
Table III.5. Distribution coefficients of 2% DVB-, 2% NNMBA- and 2% WDMA- crosslinked polyacrylamide amines.
i) Recyclability of polyacrylamide supported amines
Table III.6. Recyclability of 2% DVB-, 2% NNMBA- and 2%TEGDMA- crosslinked polyacrylamide aminocomplexes
j) Swelling characteristics of polyacrylamide amino ligands and corresponding Cr (III) complexes.
Table III.7. EWCs of DVB-, NNMBA- and TEGDMA- crosslinked polyacrylamide amines and correspondingCr (III) complexes.
Fig. III.20. EWCs of various DVB-, NNMBA- and TEGDMA crosslinked polyacrylamide amines and corresponding Cr (III) complexes.
Fig. III.21. EWCs of various DVB- crosslinked polyacrylamide amines and corresponding Cr (III) complexes.
Fig. III.22. EWCs of various NNMBA- crosslinked polyacrylamide amines and correspondingCr (III) complexes.
Fig. III.23. EWCs of various TEGDMA- crosslinked polyacrylamide amines and corresponding Cr (III) complexes.
Table III.8. EWCs of various EGDMA-, BDDMA- and HDDA crosslinked polyacrylamide amines and corresponding Cu (II) complexes
Fig. III.24. EWCs of various EGDMA-, BDDMA- and HDDA crosslinked polyacrylamide amines and corresponding Cr (III) complexes.
2. Physicochemical characterisation of crosslinked amino polyacrylamides and metal complexes
a) Infrared spectral analysis of polymer supported amines and complexes.
Fig. III.25a.IR spectra of DVB-crosslinked polyacrylamide
Fig. III.25b.IR spectra of NNMBA -crosslinked polyacrilamide
Fig. III.25c.IR spectra of TEGDMA -crosslinked polyacrylamide
Fig. III.25d.IR spectra of EGDMA -crosslinked polyacrylamide
Fig. III.25e.IR spectra of BDDMA -crosslinked polyacrylamide
Fig. III.25f.IR spectra of HDDA -crosslinked polyacrylamide
b) Electronic spectral analysis of crosslinked polyacrylamide supported amino complexes
Fig. III.26 a.Electronic spectra of DVB- crosslinked polyacrylamide amino complexes of (1) Cu (I1) (2) Cr (III), (3) Fe (II1) and (4) Mn (I1) ions.
Fig. III.26b.Electronic spectra of NNMBA- crosslinked polyacrylamide amino complexes of (1) Cu (II), (2) Cr (III), (3) Fe (II1) and (4) Mn (I1) ions.
Fig. III.26c.Electronic spectra of TEGDMA- crosslinked polyacrylamide amino complexes of (1) Cu (II), (2) Cr (III), (3) Fe (II1) and (4) Mn (I1) ions.
Table III.9 Electronic spectral data of 2% DVB- 2%NNMBA- and 2% TEGDMA- crosslinked aminopolyacrylamides
Fig. III.10. Effect of extent of crosslinking on the absorption maxima of Cu (I1) complexes of DVB-, NNMBA- and BDDMA- crosslinked polyacrylamides
c) EPR spectra of polyacrylamide supported amino -Cu (II) complexes.
Fig. III.27c.EPR spectra of Cu (II) complexes of 2-20 mole% of BDDMA-crosslinking.
Fig. III.27d.EPR spectra of Cu (II) complexes of 2-20 mole% of HDDA-crosslinking.
Table III.11. EPR data of Cu (II) complexes of EGDMA-, BDDMA-tHDDA- AND TEGDMA-crosslilnked polyacrylamide amines.
d) Magnetic moment measurements of polymer supported amino complexes.
Table III.12. Magnetic susceptibility measurements of 2% DVB-, 2% NNMBA- and 2% TEGDMA-crosslinked polyacrylamideamino complexes
e) Morphological study by scanning electron microscopy.
f) Thermal studies of crosslinked polyacrylamides with varying crosslinking agents and of the corresponding Cr (III) complexes.
Fig. III.29a. TG curves of 2% DVB- crosslinked polyacrylamide amine and complexes with varying amounts of Cr (III)
Fig. III.29b.TG curves of 2% NNMBA- crosslinked polyacrylamide amine and complexes with varying amounts of Cr (III)
Fig. III.29c.TG curves of 2% TEGDMA- crosslinked polyacrylamide amine and complexes with varying amounts of Cr (III)
Table III.13. Phenomenological data of the thermal decomposition of DVB-, NNMBA- and TEGDMA crosslinked polyacrylamides and complexes with varying extents of Cr (III)
Table III.14a kinetic data of the thermal decomposition of 2% DVB- crosslinked aminopolyacrylamide with varying extents of complexed Cr (III) ions
Table III.14b Kinetic data of the thermal decomposition of 2% NNMBA- crosslinked amino polyacrylamide with varying extents of complexed Cr (III) ions
Table III.14c Kinetic data of the thermal decomposition of 2% TEGDMA- crosslinked amino polyacrylamide with varying extents of complexed Cr (III) ions
IV. COMPLEXES OF CROSSLINKED POLYACRYLAMIDE SUPPORTED AMINO ACIDS
1. Poly (6 N-acryloyl arginine)
Fig. IV.1. Amino acid capacity of DVB- and NNMBA crosslinked polyacrylamide supported arginine for varying extents of crosslinking agents.
2. Poly (N-acryloyl glycine)
Fig. IV.2. Amino acid capacity of DVB- and NNMBA crosslinked polyacrylamide supported glycine for varying extents of crosslinking agents.
3. Poly (N-acryloyl aspartic acid)
Fig. IV.3. Amino acid capacity of DVB- and NNMBA crosslinked polyacrylamide supported aspartic acid for varying extents ofcrosslinking agents.
4. Complexation and metal ion intake of polymer supported amino acids.
Table IV.1. Metal ion intake of crosslinked polyacrylamide supported arginine
Table IV.2. metal ion intake of crosslinked polyacrylamide supported glycine
Table IV.3. Metal ion intake of crosslinked polyacrylamide supported aspartic acid
5. pH Dependence of complexation of DVB- and NNMBA-polyacrylamide supported arginine.
Table IV.4. pH dependence of complexation of 4% crosslinked polyacrylamide supported aminoacids
Fig. IV.4. Variation of metal ion intake with pH of 4%DVB- crosslinked polyacrylamide supported amino acids.
6 Recyclability of polyacrylamide supported amino acids
Table IV.5. Recyclability of crosslinked polyacrylamide supported arginine
7 Swelling characteristics of complexed and uncomplexed amino acid incorporated polyacrylamides
Table IV.6. Equilibrium water content of crosslinked polyacrylamide supported arginine and the corresponding Cu (II) complexes
8. IR analysis of polymer supported amino acids and the corresponding Cu (II) complexes.
Fig. IV.5a. IR spectra of (1) 2% DVB- crosslinked polyacrylamide supported arginine (2) Cu (II) complex
Fig. IV.5a. IR spectra of (1) 2% NNMBA- crosslinked polyacrylamide supported arginine (2) Cu (II) complex
9 Electronic spectral studies of metal complexes of crosslinked polyacrylamide supported amino acids.
Table IV.7. Electronic spectral data of arginine incorporated crosslinked polyacrylamide metal complexes.
Fig. IV.6a. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Cu (II) complex.
Fig. IV.6b. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Co (II) complex
Fig. IV.6c. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Cr (III) complex
Fig. IV.6d. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Fe (III) complex
Fig. IV.6e. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Ni (II) complex
Fig. IV.6f. Reflectance spectra of 4% DVB- crosslinked polyacrylamide supported arginine - Mn (II) complex
Table IV.8. Variation in d-d transition of Cu (II) complexes with monomer ratio of crosslinking agents
10 EPR spectral analysis of Cu (II) complexes of polyacrylamide supported arginine and glycine.
Table IV.9. EPR spectral data of Cu (II) complexes of polyacrylamide supported amino acids
Fig. IV.7a. EPR spectra of Cu (II) complexes of 2-20 mole% DVB- crosslinked polyacrylamide supported arginine.
Fig. IV.7b. EPR spectra of Cu (II) complexes of 2-20 mole% DVB- crosslinked polyacrylamide supported glycine.
Fig. 1V.7c. EPR spectra of Cu (II) complexes of 2-20 mole% NNMBA- crosslinked polyacrylamide supported arginine.
11 Thermal analysis of the Cu (II) complexes of NNMBA-crosslinked polyacrylamide arginine.
Table IV. 10. Phenomenological data of thermal decomposition of NNMBA- crosslinked polyacrylamide supported Arginine Cu (II) complexes
Fig. IV.8. TG curves of Cu (II) complexes of 2-20 mole%NNMBA- crosslinked polyacrylamide supported arginine.
Table IV.ll. Kinetic data of thermal decomposition of NNMBA-AA-Arg-Cu (II) complexes for varying mole% of crosslinking
12. Scanning electron micrographs of various polymer supported amino acids and corresponding Cu (II) complexes.
13. Complexation of DVB-crosslinked polystyrene supported amino acids.
a) 2% DVB-crosslinked polystyrene supported glycine, arginine and aspartic acid.
b) Complexation parameters of polystyrene supported amino acids.
c) Characterisation of polyacrylamide supported amino acids and Cu (II) complexes by IR and EPR spectroscopy, thermal and SEM techniques.
Spectral analysis
Fig. IV.10. IR analysis of 1.DVB- crosslinked chloromethyl polystyrene 2.DVB- polystyrene supported arginine and 3. The corresponding Cu (II) complex
Fig. IV.11. EPR spectra of 2% DVB- crosslinked polystyrene supported arginine-Cu (II) complex.
Thermal analysis of polystyrene supported arginine and the corresponding Cu (II) complex
Fig. IV.12a.Thermogram of 2% DVB- crosslinked polystyrene supported arginine
Fig. IV.12b.Thermogram of 2% DVB- crosslinked polystyrene supported arginine -Cu (II) complex
Table IV.13. Phenomenological data of the thermal decomposition of DVB-crosslinked polystyrene supported arginine (DVB-PS-Arg) and the corresponding Cu (II) complex.
Table IV.14. Kinetic data of thermal decomposition of DVB- crosslinked polystyrene supported arginine and corresponding Cu (II) complex.
14. Synthesis and complexation of encapsulated amino acid ligand in polymer matrix.
a) Encapasulated glycine.
b) Complexation of encapsulated glycine and selectivity of the desorbed metal.
c) Characterisation of the encapsulated glycine Cu (II) complex by IR and electronic spectroscopy, thermal analysis and SEM technique.
Table IV.16. Electronic spectral data of glycine encapsulated NNMBA- crosslinked polyacrylamide complexes.
Thermogravimetric studies of encapsulated glycine and complexes
Table IV.17. Phenomenological data of the thermal decomposition of the encapsulated system
Table IV.18. Kinetic data of thermal decomposition of glycine encapsulated system.
Fig. IV.14a. TGA and DTG of glycine encapsulated in NNMBA- crosslinked polyacrylamide.
Fig. IV.14b. TGA and DTG of Cu (II) complex of glycine encapsulated in NNMBA- crosslinked polyacrylamide.
Scanning electron microscopy of encapsulated glycine and complexes
15. Application of crosslinked polyacrylamide supported ligands and complexes.
a Separation of metal ions by column technique using crosslinked polyacrylamide amine.
b. Catalytic decomposition of H2O2 using various polymer metal complexes
i) Effect of polymer back bone on catalytic efficiency of Cu (II) complexes
ii) Effect of various metal complexes on catalytic decomposition of H2O2
iii) Phenomenological aspects of catalytic decomposition of H2O2
iv.) Reuse of the polymer metal complex in catalytic decomposition of H2O2
v) Time course of catalytic decomposition of H2O2
Fig. IV.16a. Time-course of catalytic decomposition of H2O2 in presence of DVB-, NNMBA- and TEGDMA-crosslinked polyacrylamide aminoCu (II) complexes.
Fig. IV.16b. Time-course of catalytic decomposition of H2O2 in presence of EGDMA-, BDDMA- and HDDA- crosslinked polyacrylamide amino Cu (II) complexes.
V. EXPERIMENTAL
1. General
a) Materials
b) Instrumental
1. IR spectroscopy
2. Electronic spectroscopy
3. EPR spectroscopy
4. Scanning electron microscopy
5. Magnetic susceptibility
6. Thermogravimetric analysis
7. Microanalysis
2. Preparation of crosslinked polyacrylamides
a) Polyacrylamides crosslinked with divinylbenzene
b) Polyacrylamides crosslinked with N, N-methylene-bis-acrylamide
c) Polyacrylamides crosslinked with triethylene glycol, dimethacrylate
d) Polyacrylamides crosslinked with ethyleneglycol dimethacrylate.
e) Polyacrylamides crosslinked with butanediol dimethacrylate
f) Polyacrylamides crosslinked with hexanediol diacrylate
3. Preparation of aminopolyacrylamides.
4. Estimation of amino capacity in poly (N-2 aminoethylacrylamide) s
5. Preparation of amino acid incorporated polyacrylamides
a) Preparation of poly (E, -N-acryloyl arginine) and estimation of arginine functionality in the polymer
b) Preparation of poly (N-acryloyl glycine) and estimation of the amino acid functionality in the polymer
c) Preparation of poly (N-acryloyl aspartic acid) and estimation of amino acid functionality
6. Preparation of polystyrene supported amino acids
7. Preparation of glycine encapsulated NNMBA crosslinked polyacrylamide
8. Complexation of polyacrylamide supported amines and amino acids.
a) Preparation of polymer metal complexes.
b) Estimation of metal ion intake.
c) Swelling measurements
d) Recyclability of complexed resins
e) pH Dependence of complexation.
f) Distribution coefficient
g) Time course of complexation
h) Kinetics of complexation
9. Application of polymeric ligands and metal complexes
a) Separation of metal ions by continuous flow process.
b) Catalytic activity of metal complexes in decomposition of H2 O2.
VI. SUMMARY AND CONCLUSION
REFERENCES