HOME
Search & Results
Full Text
Thesis Details
Page:
390
Full Screen
TITLE
DEDICATION
CERTIFICATE-1
CERTIFICATE-2
DECLARATION
ACKNOWLEDGEMENT
CONTENTS
GLOSSARY
PREFACE
PART I - INTRODUCTION
1. Introduction
1.1.1 Composites
Fig.1.1.1 Classification of composites
1.1.2 Biofibres / Lignocellulosic Fibres / Natural Fibres
Fig.1.1.2 Structure of biofibre
Table 1.1.18 List of important biofibres
1.1.2.1 Biofibres: Advantages & Disadvantages
1.1.3. Biocomposites
Fig.1.1.3 Fibre reinforced plastic composites
1.1.3.1 Classification of Biocomposites
1.1.3.1.1 Green Composites
Fig.1.1.4 (a & b) SEM photomicrographs of the fracture tensile surfacesof untreated and treated composites
1.1.3.1.2 Hybrid Biocomposites
1.1.3.1.3 Textile Biocomposites
1.1.3.2 Applications of Biocomposites
1.1.3.3 Designing Biocomposites
1.1.4. Electrospinning (ELSP)
Fig. 1.1.7 [Reference: Kidoaki et at. Biornaterials 26, 37, 2005
1.1.5. Cellulose Based Nanocomposites
Fig.1.1.8 Model of the cellulose microfibril structure
1.1.6. Interface
1.1.6.1 Characterization Techniques
1.1.6.1.1 Micro mechanical Techniques
1.1.7. Natural Rubber [NR}
1.1.7.1 Grades and Grading
1.1.7.2 Modifications of Natural Rubber
1.1.8 Short Fibre Reinforced Rubber Composites
1.1.8.1 Theory of Reinforcement
1.1.8.2 Factors Affecting Reinforcement
1.1.8.3. Biofibre Reinforced Natural Rubber Composites
1.1.8.4 Biofibre / Natural Rubber Adhesion
1.1.9. Processing
1.1.10. Applications of Fibre Reinforced Rubber Composites
1.1.11 Importance of the Work
1.1.11.1 Sisal and Oil Palm Fibres
1.1.11.2. Scope of The Present Work
1.1.12 Major Objectives
References
2. Experimental
1.2.1 Materials
1.2.2 Fiber Preparation
1.2.3 Chemical modification of sisal, oil palm fibres and sisal fabric
1.2.3.1 Alkali treatment
1.2.3.2 Silane treatment
1.2.3.3 Thermal treatment
1.2.4 Spectroscopic Techniques
1.2.5 Preparation of hybrid biocomposites and textile biocomposites
1.2.6 Measurement of Properties
1.2.6.1 Scanning electron microscopic studies (SEM)
1.2.6.2 Fiber Breakage Analysis
1.2.6.3 Processing Characteristics
1.2.6.4 Green Strength Measurements
1.2.6.5 Mechanical Property Measurements
1.2.6.6 Swelling Studies
1.2.6.6.1 Anisotropic swelling
1.2.6.6.2 Equilibrium swelling studies
1.2.6.7 Hardness and Abrasion Resistance Studies
1.2.6.8 Dynamic Mechanical Analysis
1.2.6.9 Thermogravimetric Studies
1.2.6.10 Water Sorption Experiments
1.2.6.11 Solvent Sorption Measurements
1.2.6.12 Ageing and Bio-degradation Studies
1.2.6.13 Dielectric Measurements
1.2.6.14 Stress Relaxation Experiments
References
PART II -HYBRID BIOCOMPOSITES
1. Mechanical Properties of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
2.1.1 Introduction
2.1.2 Results and Discussion
2.1.2.1 Evaluation of Fiber Breakage
Table 2.1.1. Fibre Length Distribution Index
2.1.2.2 Processing Characteristics
2.1.2.2.1 Effect of fiber loading
2.1.2.2.2 Effect of fiber ratio
Fig. 2.1.4 Rheographs of mixes
2.1.2.3 Mechanical Properties
2.1.2.3.1 Effect of Fiber Length
2.1.2.3.2 Effect of Fiber Loading
2.1.2.3.3 Effect of Fiber Ratio
2.1.2.4 Green Strength Measurements
Fig. 2.1.16 Effect of fibre loading on percentage orientation of fibres
2.1.2.5 Equilibrium Swelling Studies
2.1.2.5.1 Rubber Fiber Interactions
2.1.2.5.2 Swelling index and Cross link density determination
2.1.2.6 Anisotropic Swelling Studies
2.1.2.6.1 Effect of Fiber Loading
2.1.2.6.2 Effect of Fiber Ratio
2.1.2.7. Theoretical modeling
2.1.3 Conclusion
References
2. Mechanical Properties of Chemically Modified Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
2.2.1 Introduction
2.2.2 Results and Discussion
2.2.2.1 Processing characteristics
2.2.2.1.1 Effect of bonding agent and chemical modification
2.2.2.2 Mechanical properties
2.2.2.3 IR spectrum of treated fibres
2.2.2.4 Equilibrium swelling studies
2.2.2.4.1 Rubber-Fiber Interactions and Extent of Reinforcement
2.2.2.4.2 Swelling index and Cross link density determination
2.2.2.5 Anisotropic swelling studies
2.2.2.6 Scanning electron microscopic studies
2.2.3 Conclusion
References
3. Dynamic Mechanical & Thermal Analyses of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
2.3.1 Introduction
2.3.2 Results and Discussion
2.3.2.1 Storage Modulus
2.3.2.2 Loss Modulus
2.3.2.3 Mechanical damping factor (tan δ)
2.3.2.4 Effect of chemical modification
2.3.2.4.1 Storage Modulus
2.3.2.4.2 Loss Modulus and tan δ
2.3.2.5 Frequency dependence of hybrid biocomposites
2.3.2.6 Thermal properties
2.3.2.6.1 Kinetics of thermal degradation
2.3.3. Conclusion
References
4. Sorption Studies of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
2.4.1 Introduction
2.4.2 Results and Discussion
2.4.2.1 Moisture uptake in biofibre reinforced composites
2.4.2.2 Fiber loading
2.4.2.3 Chemical modification
2.4.2.4 Kinetic parameters
2.4.2.4.1 Diffusion coefficient
2.4.2.4.2 Sorption Coefficient
2.4.2.4.3 Permeability Coefficient
2.4.2.5 Sorption characteristics of aromatic solvents
2.4.2.5.1 Effect of fiber loading on solvent uptake
2.4.2.5.2 Effect of chemical modification on solvent uptake
2.4.3 Conclusion
References
5. Dielectrical Properties of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
2.5.1 Introduction
2.5.2 Theoretical Background
2.5.3 Results and Discussion
2.5.3.1 Dielectric constant
2.5.3.1.1 Effect of fibre loading and chemical modification
2.5.3.2 Volume Resistivity
2.5.3.2.1 Effect of fibre loading and chemical modification
2.5.3.3 Electrical conductivity
2.5.3.4 Dissipation factor
2.5.4 Conclusion
References
6. Stress Relaxation and Biodegradation Studies of Short Sisal / Oil Palm Hybrid Biofibre Reinforced Natural Rubber Biocomposites
2.6.1 Introduction
2.6.2 Results and Discussion
2.6.2.1 Effect of fiber loading
2.6.2.2 Effect of chemical modification and role of interfacial adhesion
2.6.2.3 Effect of strain level
2.6.2.4 Biodeterioration of lignocellulosic fibres
2.6.2.5 Biodegradation of biofibre reinforced rubber composites
2.6.2.6 Ageing
2.6.2.7 Fracture topology of biodegraded samples
2.6.3 Conclusion
References
PART III - TEXTILE BIOCOMPOSITES
1. Mechanical and Dielectric Analyses of Woven Sisal Fabric Reinforced Natural Rubber Textile Biocomposites
3.1.1 Introduction
3.1.2 Results and Discussion
3.1.2.1 Sisal fabric
3.1.2.2 Chemical modification
3.1.2.3 Swelling index and cross link density determination
3.1.2.4 Dielectric properties
3.1.3 Conclusion
References
2. Dynamic Mechanical & Thermal Analyses of Woven Sisal Fabric Reinforced Natural Rubber Textile Biocomposites
3.2.1 Introduction
3.2.2 Results and Discussion
3.2.2.1 Storage Modulus
3.2.2.2 Loss modulus and damping characteristics
3.2.2.3 Frequency dependence of textile composites
3.2.2.4 Thermal properties
3.2.2.5 Kinetics of thermal degradation
3.2.3 Conclusion
References
3. Sorption Studies of Woven Sisal Fabric Reinforced Natural Rubber Textile Biocomposites
3.3.1 Introduction
3.3.2 Results and Discussion
3.3.2.1 Moisture uptake in textile biocomposites
3.3.2.2 Kinetic parameters
3.3.2.2.1 Diffusion coefficient
3.3.2.2.2 Sorption coefficient
3.3.2.2.3 Permeability coefficient
3.3.2.3 Solvent uptake in textile biocomposites
3.3.3 Conclusion
References
PART IV - CONCLUSION
1. Conclusions and Future Outlook
4.1 Conclusions
4.2 Future Work
CURRICULUM VITAE OF MRS. MAYA JACOB
PAPERS PRESENTED/ ACCEPTED IN CONFERENCES