• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 213
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • ABBREVIATIONS
  • 1. INTRODUCTION AND OBJECTIVES
  • References
  • 2. SOLID PHASE PEPTIDE SYNTHESIS-A REVIEW ON RECENT DEVELOPMENTS
  • 2.1. Principles of Merrifields Peptide Synthesis
  • 2.2. The Role of Solid Support
  • 2.3. New Approaches in Solid Phase Peptide Synthesis
  • 2.3.a. Resin peptide linkages
  • 2.3.b. Multi-detachable handle supports in SPPS
  • 2.3.c. Photolysis-an efficient method for the synthesis of protected peptides in SPPS
  • 2.3.d. Linkers for miscellaneous protection of peptides
  • 2.3.e. Use of Fmoc- amino acids-a mild procedure for SPPS
  • 2.3.f Polymeric carboxyl protection
  • 2.3.g. Sequential attachment of amino acids and deprotection
  • 2.3.h. Detachment of peptide from the support
  • References
  • 3. SYNTHESIS, FUNCTIONALISATION AND CHARACTERIZATION OF 1, 4-BUTANEDIOL DIMETHACRYLATE CROSS-LINKED POLYSTYRENE (PS-BDODMA)
  • 3.1. Introduction
  • 3.2. Results and Discussion
  • 3.2.a. Synthesis of BDODMA- cross linked polystyrene (PS-BDODMA) support
  • 3.2.b. Characterization of PS-BDODMMA support
  • 3.2.c. Swelling and stability studies of polymer support
  • 3.2.d Functionalisation of PS-BDODMA resin
  • 1. Chloromethylation
  • 2. Hydroxymethylation
  • 3. Aminomethylation
  • 3.2.e. C-terminal amino acid incorporation to PS-BDODMA resin
  • 3.2.f. Time-dependent cleavage of Boc-amino protection
  • 3.2.g. Time-dependent cleavage of Fmoc-amino protection
  • 3.2.h. Temperature-dependence in the rate of amino acid coupling in SPPS
  • 3.2.i. Time and temperature-dependent cleavage ofpeptides
  • 3.3. Experimental
  • 3.3.a. Materials and methods
  • 3.3.b. Preparation of chloromethyl methyl ether
  • 3.3.c. Preparation of PS-BDODMA support by suspension polymerization
  • 3.3.d. Swelling studies
  • 3.3.e. Stability studies
  • 3.3.f. Functionalisation of PS-BDODMA resin
  • 1. Chloromethylation
  • 2. Hydroxymethylation
  • 3. Aminomethylation
  • 3.3.g. Preparation of PS BDODMA-HMPA resin
  • 3.3.h. Preparation of PS-DVB-HMPA resin
  • 3.3.i. Esterification of Boc-amino acid to chloromethyl resin
  • 3.3.j. Time-dependent esterification of Boc-amino acids to PS-BDODMA and PS-DVB resins
  • 3.3.k. Esterification of Fmoc-amino acid to polymer support using MSNT
  • 3.3.l. Time-dependent esterification of Fmoc-amino acid to PS-BDODMA, PS-BDODMA-HMPA, PS-D VB and PS-DVB-HMPA resins
  • 3.3.m. Time-dependent Boc-deprotection
  • 3.3.n. Time-dependent Fmoc-deprotection
  • 3.3.o. Time-dependent coupling of amino acids at different temperatures
  • 3.3.p. Detachment of peptide from PS-BDODMA support
  • References
  • 4. PS-BDODMA RESIN, MERRIFIELD RESIN AND SHEPPARD RESIN IN PEPTIDE SYNTHESIS- A COMPARATIVE STUDY
  • 4.1. Introduction
  • 4.2. Results and Discussion
  • 4.2.a. 4-Hydroxymethyl phenoxyacetamidomethyl 2% butanediol dimethacrylate cross-linked polystyrene (PS-BDODMA-HMPA) resin
  • 4.2.b. p-[ (R, S) -a- (I- (9H-fluoren-9- yl) methoxyformamidol-2, 4 dimethoxybenzyl]-phenoxyacetamidomethyl 2% butanediol dimethacrylate cross-linked polystyrene (PS-BDODMA-Rink amide) resin
  • 4.2.c. Synthesis and characterization of peptides
  • 1. Synthesis of Leu-Gly-Ala-Val
  • 2. Synthesis of (65- 74) fragment of Acyl carrier protein
  • 3. Synthesis of Leu-Gly-Ala-Leu-Gly Ala
  • 4. Synthesis of Ala-Ala Ala Ala
  • 5. Synthesis of 25-residue fragment of NS I region of Hepatitis C viral
  • 6 Synthesis of 14-residue and I0-residue fragments of NS 1 region of Hepatitis C viral polyprotein
  • 4.3. Experimental
  • 4.3.a. Materials
  • 4.3.b. Preparation of Boc-azide
  • 4.3.c. Preparation ofanzino acid derivatives
  • 1. Amino acid methyl / ethyl esters
  • 2 Boc-amino acids (Schnabels method)
  • 4.3.d. Preparation of 1-Hydroxybenzotriazole (HOBt)
  • 4.3.e. Methods. fur the purification and detection of peptides
  • 4.3.f. Preparation of PS-BDODMA-HMPA resin
  • 4.3.g. Preparation of PS-D VB-HMPA resin
  • 4.3.h. Preparation of Sheppard-HMPA resin
  • 4.3.i. Preparation of Fmoc-Val-D-CH2-C6H4-O-CH2-CO-NHC6H4-PS- BDODMA resin
  • 4.3.j. Preparation of Fmoc-Val-O-CH2-CJ-I4-O-CH2-CO NH-C6H4-PS-DVB resin.
  • 4.3.k. Preparation of Fmoc-Val-O-CHZ-C6H4-O-CH2-CO-NH-C6H4-Sheppard resin
  • 4.3.l. Preparation o f Fmoc-Gly-O-CH2-C6H4-O-CH2-CO-NH-C6H4-PS BDODMA resin
  • 4.3.m. Preparation of Fi7zoc-Gly-O-CHr-C6FI4-O-CHrCO-NH-C6H4-PS-DVB resin.
  • 4.3.n. Preparation of Fmoc-G4-O-CH2-C6H4 O-CHrCO-NH-C6H4 Sheppard resin
  • 4.3.o. Preparation of PS-BDODMA-Rink amide resin
  • 4.3.p. Preparation of PS-DVB-Rink amide resin
  • 4.3.q. Preparation of Fmoc-Ala-NH- (H3CO) 2C6H3-CH-C6H4-O-CH2-CO-NH-CH2-C6H4-PS-BDODMA resin
  • 4.3.r. Preparation of Fmoc-Ala-NH- (H3CO) 2C6H3-CH-C6H4-O-CH2-CO NH-CH, -C6H4-PS DVB resin
  • 4.3.s. Peptide Synthesis
  • 1. Synthesis of Leu Ala-Gly-Val
  • 2 Synthesis of Val-Gln-Ala-Ala-Ile-Asp-Tyr-Ile Asn-Gly (acyl carrier protein fragment)
  • 3. Synthesis of Leu-Gly- Ala-Leu-Gly- Ala
  • 4. Synthesis of Ala-Ala-Ala-Ala
  • 5. Synthesis o f Leu-Ile-Asn-Thr-Asn-Ala-Ser-Trp-His-Ala-Asn-Arg-Thr-Ala-Leu-Ser-Asn-A.sp-Ser-Lys-Leu-Asn-Thr-Gly- Ala-NH2
  • 6. Synthesis of Leu-Ile-Asn-Thr-Asn-Ala-Ser-Trp-His- Ala-Asn-Arg Thr-Ala-NH2
  • 7.Synthesis of Leu- Asn-Cys (Acm) Asn- Asp-Ser-Leu- Asn-Thr-Ala- NH2
  • References
  • 5. SYNTHESIS OF BIOLOGICALLY ACTIVE PEPTIDES ON PS-BDODMA RESIN USING BOC-CHEMISTRY
  • 5.1. Introduction
  • 5.2. Results and discussion
  • 5.2.a. Synthesis of model peptides on PS-BDODMA resin using Boc-chemistry
  • 1. Synthesis of Phe-Phe-Thr-Lys-Phe-Lys-Ser-Gln
  • 2. Synthesis of Val-Gln-Gln-Gly-Pro-Trp-Gly-GlyAla-Ala-Val
  • 3. Synthesis of Val-Asn-Asn-Gln-Gln-Asn-Asn-Ile-Gly-Gln-Gln-Gly Ala-Ala-Vol
  • 4. Synthesis of (Val) 10
  • 5. Synthesis of Val-Gln-Asn-Asn-Val-Val-Val-Val-Val
  • 6. Synthesis of Pro- Vat- Val-Thr-Thr- Vat- Val- Vat- Val-Asn
  • 7. Synthesis of Thr- Val- Val- Val- Val- Asn
  • 8. Synthesis of Pro-Met-Leu-Phe-Val-Thr
  • 9. Synthesis of Val Met-Leu-Phe-Leu-Pro
  • 10. Synthesis of Met-Leu-Phe-Tyr-Val-Gly
  • 5.2.b. Synthesis of protected peptides
  • 1. Synthesis of Boc-Met-Leu-Phe-Cys (Acm) -Lys (Cl-Z) -Vat-OMe
  • 2. Synthesis of Boc-Pro- Met-Leu-Phe-Val-Thr-OMe
  • 3. Synthesis of Boc-Val- Met-Leu-Phe Leu-Pro-OMe
  • 4. Synthesis of Boc Met-Leu-Phe-Tyr (Bzl) -Teal-Gly-OMe
  • 5.2.c. Synthesis of biologically active peptides
  • 1. Synthesis of Leucine enkephalin (Tyr-Gly-Gly-Phe-Leu)
  • 2. Synthesis of 3-casomorphin (Bovine) (Tyr-Pro-Phe-Pro-Gly-Pro- Ile)
  • 3. Synthesis o f 3-casomorphin (Human) (Tyr-Pro-Phe-Val-Glu-Pro-Ile)
  • 4. Synthesis of C-reactive protein (77-82) (Val-Gly-Gly-Ser-Glu-Ile)
  • 5. Synthesis of 33-42 fragment of Alzheimers 3-amyloid peptide (Gly-Leu-Met-Val-Gly-Gly-Val-Val-lle-Ala)
  • 6. Synthesis of inhibitor of Ribonucleotide Reductase of Herps Simplex Virus-Type I (Tyr- Ala-GlyAla-Val-Val-Asn-Asp-Leu)
  • 7. Synthesis of Scyliorhinin I peptide (Ala-Lys-Phe Asp-Lys-Phe-Tyr Gly-Leu-Met)
  • 8. Synthesis of 43-residue peptide from a CD 4 binding domain of Human Immunodeficiency Virus Envelope Glycoprotein
  • 5 3. Experimental
  • 5.3.a. General procedure for solid phase peptide synthesis
  • 1. Phe-Phe-Thr-Lys-PheLys-Ser-Gln
  • 2. Val-Gin- (rIn-Gly-Pro-Trp-Gly-GlyAla-Ala-Val
  • 3. Val-Asn--Asn-Gln-Gln-Asn-Asn-Ile-Gly-Gln-Gln-Gly- Ala- Ala-Val
  • 4 (VaI) 10
  • 5. Val-GIn-Asn-Asn-Val-Val-Val-Val-Val
  • 6. Pro- Vcrl-Val-Thr-Thr-Val-Val-Val-Val-Asn
  • 7. Thr-Vol-Val-Vol- Val-Asn
  • 8. Pro-Met-Leu-Phe-Val-Thr
  • 9. Val-Met-Leu-Phe-Leu-Pro
  • 10. Met-Leu-Phe-Tyr-Val-Gly
  • 11. Boc-Met-Leu-Phe-Cys (Acm) -Lys (Cl-Z) -Val-OMe
  • 12. Boc-Pro-Met-Leu-Phe-Val-Thr-OMe
  • 13. Boc-Val-Met -Leu-Phe-Leu-Pro-OMe
  • 14. Boc-Met-Leu-phe-Tyr (Bzl) -Yal-Gly-OMe
  • 15. Synthesis of Leucine enkephalin (Tyr-Gly-Gly-Phe-Leu)
  • 16. Synthesis of b-casomorphin (Bovine) (Tyr-Pro-Phe-Pro-Gly-Pro-Ile)
  • 17. Synthesis of b-casomorphin (Human) (Tyr-Pro-Phe-Val-Glu-Pro- Ile)
  • 18. Synthesis of C-reactive protein (77-82) (Val-Gly-Gly-Ser-Glu-Ile)
  • 19. Synthesis of 33-42 fragment of Alzheimers b-amyloid peptide (Gly-Leu-Met-Val-Gly-Gly-Yal-Val-lle- Ala)
  • 20. Synthesis of inhibitor of Ribonucleotide reductase of Herps Simplex Virus-type 1 (Tyr- Ala-Gly-Ala-Val-Val-Asn-Asp-Leu)
  • 21. Synthesis of Scyliorhinin I peptide (Ala-Lys-Phe-Asp-Lys-Phe Tyr-Gly-Leu-Met)
  • 22. Synthesis of 43-residue peptide from a CD 4 binding domain of Human Immunodeficiency Virus Envelope Glycoprotein
  • References
  • 6. SYNTHESIS OF BIOLOGICALLY ACTIVE PEPTIDES ON PS-BDODMA SUPPORT USING FMOC-AMINO ACIDS
  • 6.1. Introduction
  • 6.2. Results and Discussion
  • 6.2.a. Synthesis of 4- (4-hydroxymethyl-3-methoxyphenoxy) butylamidomethyl 2% PS-BDODMA (PS-BDODMA-HMPB) resin
  • 6.2.b Synthesis of peptides
  • 1. Synthesis of 1-15 fragment of Esculentin-1 (Gly-Ile-Phe-Ser-Lys Leu-Gly-Arg-Lys-Lys-Ale-Lys-Asn-Leu-Leu)
  • 2. Synthesis ref 1-15 fragment of Esculentin-1 modified at Gly7 by Pro Gly-Ale-Phe-Ser-Lys-Leu-Pro-Arg-Lys-Lys-Ile-Lys- Asn-Leu-Leu)
  • 3. Synthesis of 33-44 fragment of Esculentin-1 (Thr-Gly-Ale-Asp-Ile-Ala-GI v- (.ys (Acm) -Lys-Ale-Lys-Gly)
  • 4. Synthesis of 33-44 fragment of Esculentin-Imodified at Gly39 by Ala (Thr-Gly-lle-Asp-Ile-Ala- Ala-Cys (Acm) -Lys-Ale-Lys-Gly)
  • 5. Synthesis of 9-27 fragment of Esculentin-1 (Lys Asn-Val-Gly-Lys-Ghr-Val-Gly-Met-Asp-Val-Val- Arg-Thr-Gly-Ale-Asp-Ale-Ala)
  • 6. Synthesis of 9-27 fragment of Esculentin-1 modified by replacing Glu and Asp by Lys (Lys-Asn-Val-Gly-Lys-Lys-Val-Gly- lle-Lys-Val-Val-Arg-Thr-Gly-Ale-Lys-Ale-Ala) Synthesis of 9-27 fragment of Esculentin-1 modified by replacing Gly with Ala and Asp & Glu with Lys (Lys-Asn-Val- Ala-Lys Lys-Val Ala-Met-Lys- Val- Val-Arg-Thr-Gly-Ile-Lys-lle-Ala)
  • 7. Synthesis of 9-27 fragment of Esculestin-1 modified by replacing Gly with Alaand Asp & Glu with Lys
  • 6.3 Experimental
  • 6.3.a. Preparation of reagents and amino acid derivatives
  • 6.3.a.1. Synthesis of Fmoc-amino acids using fluorenyl methyl -chloroformate
  • 6.3.a.2. Synthesis of Fmoc-amino acids using fluorenyl methyl succinimidyl carbonate
  • 6.3.a.3. Preparation of 4- (4-hydroxymethyl-3-methoxyphenoxy) butylamidomethyl 2% PS-BDODMA (PS-BDODMA-HMPB) resin
  • 6.3.a.4. Preparation of Fmoc Ala-O-CH2-C6H3 (O (CH3) -O-CH2-NHCO-CH2-C6H4-resin
  • 6.3.a.5. Preparation of Fmoc-Leu-O-CH2-C6H4-resin
  • 6.3.a.6. Preparation of Fmoc-Gly-O-CH2-C6H4-resin
  • 6.3.a.7. Synthesis of peptides
  • 1. Synthesis of 1-15 fragment of Esculentin-1 (Glv-Ile-Phe-Ser-Lys-Leu-Gly-Arg-Lys-Lys-Ile-Lys- Asn-Leu-Leu)
  • 2. Synthesis of 1-15 fragment of Esculentin-1 modified at Gly7 by Proline (Gly-lle Phe-Ser-Lys-Leu-Pro-Arg-Lys-Lys-Ile-Lys-Asn-Leu-Leu)
  • 3. Synthesis of 33-44 fragment of Esculentin-1 (Thr-Gly Ile-Asp- Ile-Ala-Gly-Cys (Acm) -Lys-Ile-Lys-Gly)
  • 4. Synthesis of 33-44 fragment of Esculentin-I modified at Gly39 by Ala (Thr-Gly-Ile-Asp-Ile Ala-Ala-Cys (Acm) Lys-Ile-Lys-Gly)
  • 5. Synthesis of 9-27 fragment of Esculentin-1 (Lys Asn-Val-Gly-Lys-Glu-Val-Gly-Met- Asp-Val-Val-Arg-Thr Giy-Ile-Asp-Ile Ala)
  • 6. Synthesis of 9-27 fragment of Esculentin-1 modified by replacing Glu and Asp by Lys (Lys-Asn-Val-Gly-Lys-Lys Val-Gly-Met-Lys-Val-Vat Arg-Thr-Gly-lle-Lys-Ile-Ala)
  • 7. Synthesis of 9-27 fragment of Esculentin-1 modified by replacing Gly with Ala and Glu & Asp by Lys (Lys -Asn-Vat Ala Lys Lys-Val Ala Met Lys-Val-Val- Arg-Thr-Gly-Ile-Lys-Ile -Ala)
  • References
  • 7. SYNTHESIS OF PROTECTED PEPTIDE ACIDS, AMIDES AND ALKYL AMIDES USING PHOTOLYTICALLY CLEAVABLE PS-BDODMA SUPPORTS
  • 7.1. Introduction
  • 7.2. Results and Discussion
  • 7.2.a. Preparation of 4-chloromethyl 3-nitro PS-BDODMA resin
  • 7.2.b. Preparation of4-aninomethyl 3-nitro PS-BDODMA resin
  • 7.2.c. Preparation of 4-bromomethyl 3-nitre benzamidomethyl PS-BDODMA resin
  • 7.2.d. Preparation of 4-aminomethyl 3-nitro benzamidomethyl PS-BDODMA resin
  • 7.2.e. Preparation of N-alkyl aminomethyl 3 nitro benzamidomethyl PS-BDODMA resin
  • 7.2.f.Synthesis of protected peptide acids, amides and alkyl amides
  • 7.2.g. Mechanism of photolytic cleavage
  • 7.3. Experimental
  • 7.3.a. Preparation of 4-Chloromethyl 3-nitro PS-BDODMA resin
  • 7.3.b. Preparation of 4 Aminomethyl 3-nitro PS-BDODMA resin
  • 7.3.c. Preparation of 4-Bromomethyl benzoic acid
  • 7.3.d. Preparation of 4-Bromomethyl 3-nitro benzoic acid
  • 7.3.e. Preparation of 4-Bromomethyl 3-nitro benzamidomethyl PS-BDODMA resin
  • 7.3.f. Preparation of 4-Aminomethyl 3-nitro benzamidomethyl PS-BDODMA resin
  • 7.3.g. Preparation of 4 -Methyl aminomethyl 3-nitro benzamidomethyl PS-BDODMA resin
  • 7.3.h. Preparation of 4-Ethyl aminomethyl 3-vitro benzamidomethyl PS-BDODMA resin
  • 7.3.i. General synthetic protocol for peptides using solid supports
  • 1. Synthesis of peptides using Boc-amino acids
  • 2. Synthesis of peptides using Fmoc-amino acids
  • 7.3.j. General procedure for photolysis
  • 7.3.k. Synthesis of Boc-NH-Gly-Leu Ala-Leu Ala-Gly, Boc-NH-Leu-Ala Gly-Leu-Ala-Gly, Boc-NH-Gly-Ile-Cys (Acm) -Pro
  • 7.3.l. Synthesis of Fmoc-NH-Ile-Leu Ala-Gly, Fmoc-NH-Leu-Asp (OBu) Leu-Gly-Ala-Gly
  • 7.3.m. Synthesis of Ile Ala-Val-Gly-NH2
  • 7.3.n. Synthesis of Boc-NH-Pro-Val-NH2, Boc-NH-Gly-Phe-Pro-NH2, Boc-Leu-Ala-Gly-Val NH2, Boc-Ala-Gly-Leu-Ile-Gly-NH2
  • 7.3.o. Synthesis of Fmoc-NH Ala-Gly-Leu-Ile-Gly-NHz
  • 7.3.p. Preparation of Boc-NH-Val-N (CH) -resin
  • 7.3.q. Preparation of Boc-NH- ValN (C2H5-resin
  • 7.3.r. Synthesis of Boc-NH-Leu Ala-VaI-NHMe, Boc-NH- Val-LeuAla-Val NHMe, Boc-NH-Val-Leu Ala-ValNHEt, Boc-NH-Leu-Ala-Val-NHEt
  • Reference
  • 8. SUMMARY AND OUTLOOK