• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 201
 
Full Screen

  • Title
  • DEDICATION
  • DECLARATION
  • CERTIFICATE
  • ACKNOWLEDGEMENT
  • CONTENTS
  • Preface
  • 1 GENERAL INTRODUCTION
  • 1.1 Introduction
  • 1.2 General aspects of glasses
  • 1.3. lmportance of the glasses
  • 1.4 Volume-Temperature relationships
  • 1.5 Class formers and network formers
  • 1.6 Different types of glasses
  • 1.6.1 Silicate glasses
  • 1.6.2 Alkali silicate glasses
  • 1.6.3 Boric oxide glasses
  • 1.6.4 Alkali borate glasses
  • 1.6.5 The boron anomaly
  • 1.6.6 Alkali borosilicate glasses
  • 1.7 Preparation of amorphous materials (Glasses)
  • (i) Melt-quenching technique
  • (a) Splat quenching
  • (b) Melt spinning rnethod
  • (c) Roller quenching method
  • (ii) Sol-gel method
  • (iii) Ion implantation
  • 1.8 Research work undertaken in the present investigation
  • References
  • 2 EXPERIMENTAL TECHNIQUES
  • 2.1 Introduction
  • 2.2 Furnace
  • 2.3 Preparation of glass samples
  • 2.4 X-ray diffraction analysis
  • 2.5 FTIR spectroscopy
  • 2.6 UV-Visible spectroscopy
  • 2.7 Ultrasonic measurements
  • Pulse-echo overlap (PEO) method
  • 2.8 Microhardriess study
  • Vickers hardness tester
  • 2.9 Measurement of conductivity and dielectric constant
  • References
  • 3 FTIR SPECTROSCOPIC STUDY OF (1-x-y) (B2O3) -x (Li2O) -y (MCl2) GLASSES
  • 3.1 Introduction
  • 3.2 Work undertaken in the present study
  • 3.3 Experimental details
  • 3.4 Results and Discussion
  • 3.4.1 (1-x-y) (B2O3) -x (Li2O) -y (CdCl2) glass system.
  • 3.4.1.a Effect of variation in the concentration (y) of CdCl2 (0.05 ≤ y ≤ 0.20) when the concentration (x) of Li2O (x = 0.20) was kept constant.
  • 3.4.1.b Effect of variation in the concentration (x) of Li2O (0.05 ≤ x ≤ 0.20) when the concentration (y) of CdCl2 (y =.20) was kept constant.
  • 3.4.l.c Effect of variation in the concentration (x) of Li2O (0.10 ≤ x ≤ 0.40) when the concentration (y) of CdCl2 (y = 0.10) was kept constant.
  • 3.4.2 (1-x-y) (B2O3) -x (Li2O) -y (ZnCl2) glass system
  • 3.4.2.a Effect of variation in the concentration (y) of ZnCl2 (0.05 ≤ y ≤ 0.20) when the concentration (x) of Li2O (x = 0.20) was kept constant.
  • .3.4.2.b Effect of variation in the concentration (x) of Li2O (0.05 ≤ x ≤ 0.20) when the concentration (y) of ZnCl2 (y = 0.20) was kept constant.
  • 3.4.2.c Effect of variation in the concentration (x) of Li2O (0.10 ≤ x ≤ 0.40) when the concentration (y) of ZnCl2 (y = 0.10) was kept constant.
  • 3.5 General discussion
  • 3.6 Conclusion
  • References
  • 4 ULTRASONIC STUDY OF (1-x-y) (B2O3) -x (Li2O) -y (MCl2) GLASSES
  • 4.1 Introduction
  • 4.2 Theory
  • 4.3 Experimental deatils
  • 4.4 Results and discussion
  • 4.5 Conclusion
  • References
  • 5 STUDY OF MICROHARDNESS OF (1-x-y) (B2O3) -x (Li2O) -y (MCl2) GLASSES
  • 5.1 Introduction
  • 5.2 Experimental details
  • 5.3 Results and discussion
  • 5.4 Conlclusion
  • Reference
  • 6 OPTICAL PROPERTIES OF (l-x-y) (B203) -x (Li2O) -y (MCl2) GLASSES
  • 6.1 Introduction
  • 6.2 Work undertaken in the present study
  • 6.3 Theory
  • 6.4 Experimental details
  • 6.5 Results and discussion
  • 6.6 Conclusion
  • References
  • 7 AC ELCTRICAL PROPERTIES OF (1-x-y) (B2O3) -x (Li2O) -y (MCl2) GLASSES
  • 7.1 Introduction
  • PART I AC electrical properties of (l-x-y) (B2O3) -x (Li2O) -y (CdCl2) glasses
  • 7.2 Introduction
  • 7.3 Experimental details
  • 7.4 Results and discussion
  • (i) Dielectric constant
  • (ii) ac conductivity
  • 7.5. Conclusion
  • Part II AC electrical properties of (1-x-y) (B2O3) -x (Li2O) -y (ZnCl2) glasses.
  • 7.6. Introduction
  • 7.7 Experiment details
  • 7.8. Results and discussion
  • (i) Dielectric constant
  • (ii) ac conductivity
  • 7.9 Conclusion
  • References