• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 423
 
Full Screen

  • TITLE
  • DECLARATION
  • CERTIFICATE
  • ACKNOWLEDGEMENT
  • ABBREVIATIONS
  • CONTENTS
  • LIST OF TABLES
  • LIST OF FIGURES
  • 1. INTRODUCTION
  • 1.1 The Richness of Indian Biodiversity
  • 1.1.1 The South Indian Perspective
  • 1. 2 Role of Biotechnology in Conservation
  • 1. 3 Plants Proposed in the Present Study
  • l. 3. 1 Adenia hondala (Gaertn.) de Willde
  • 1. 3. 2 Baliospermum montanum Muell-Arg.
  • 1. 4 Objectives of the Present Study
  • 2. REVIEW OF LITERATURE
  • 2. 1 Conservation attempts on Adenia hondala and Baliospermum montanum.
  • 2. 2 Physiochemical studies
  • 2. 3 Conservation of Rare and Endangered Plants using in vitro methods.
  • 2. 4 Plant Tissue Culture
  • 2. 4. 1 Culture medium
  • 2. 4. 2 Role of Plant Growth Regulators
  • 2. 4. 3 Additives
  • 2. 4.4 Explant
  • 2. 4. 5 Axillary Bud Multiplication
  • 2. 5 Callus Culture and Plant Regeneration.
  • 2. 6 In vitro Root Induction and Development
  • 2. 7 Somatic Embryogenesis
  • 2. 8 Somatic Embryogenesis - Germination
  • 2. 9 Acclimatization and Field Establishment
  • 2. 10 Histological Studies
  • 2. 11 Histochemical and Histoenzymological Studies
  • 2. 12 Biochemical Studies
  • 2.13 Physiochemical Analysis
  • 2. 14 Isozymes Studies
  • 3. MATERIALS AND METHODS
  • 3. 1 Source and Choice of Plant materials
  • 3. 1. 1 Adenia hondala (Gaertn.) de Wilde
  • 3. 1. 2 Baliospermum montanum Muell. Arg.
  • 3. 2 Establishment of Cultures
  • 3. 2. 1 Glassware and instruments
  • 3. 2. 2 Basal Media
  • 3. 2. 3 Preparations of Culture Media
  • 3. 2. 4 Sterilization
  • 3. 2. 5 Explant Preparations and Surface Sterilization
  • 3. 2. 6 Inoculation and Incubation
  • 3. 2. 7 Subculture
  • 3. 2. 8 Experiments & Observations
  • 3. 3 Direct Regeneration
  • 3. 3. 1 Explants
  • 3. 3. 2 Culture medium
  • 3. 3. 3 Callus Proliferation Scoring
  • 3. 3. 4 Data Presentation
  • 3. 4 Callogenesis
  • 3. 4. 1 Explants
  • 3. 4. 2 Culture medium
  • 3. 4. 3 Subculture
  • 3. 4. 4 Data collection and Presentation
  • 3. 4. 4. 1 Callusing Frequency
  • 3. 4. 4. 2 Growth measurements
  • 3. 4. 4. 3 Callus lindex.
  • 3. 4. 4. 4 Nature of Callus
  • 3. 5 Indirect Regeneration
  • 3. 5. 1. Explants
  • 3. 5. 2 Culture medium
  • 3. 5. 3 Data presentation
  • 3. 6 Root Initiation
  • 3. 7 Somatic embryo Induction
  • 3.7. 1 Explants
  • 3. 7. 2 Culture medium
  • 3. 7. 3 Culture Conditions
  • 3. 8 Somatic embryo Maturation
  • 3. 8. 1 Carbon source
  • 3. 8. 2 Data collection and Presentation
  • 3. 8. 3 Growth measurements
  • 3. 9 Hardening and Potting.
  • 3. 10 Statistical Analysis
  • 3. 11 Histology, Histochemistry and Histoenzymology
  • 3.11.1 Collection and Fixation of Samples
  • 3. 11. 2 Sectioning
  • 3. 11. 3 Staining
  • 3. 11. 4 Photomicrography
  • 3. 11. 5 Presentation of Results
  • 3. 12 Biochemical Quantification
  • 3. 12. 1 Sample Collection
  • 3. 12. 2 Estimation of Proteins
  • 3. 12. 3 Estimation of Soluble Sugars
  • 3. 12. 4 Estimation of Starch
  • 3. 12. 5 Presentation of Results
  • 3. 13 Quality analysis
  • 3. 13. 1 Chromatographic Separation of Constituents
  • 3. 13. 1. 1 Sample Collection
  • 3. 13. 1. 2 Thin Layer Chromatography
  • 3.13.1.3 Result Analysis
  • 3. 13. 2 Phytochemical Tests.
  • 3. 13. 2. 1 Sample preparation
  • 3. 13. 2. 2 Extraction and Isolation of Saponins
  • 3. 13. 2. 3 Data presentation
  • 3. 14 Physiochemical Analysis
  • 3. 14. 1 Sample Collection
  • 3. 14. 2 Preparation of Sample
  • 3. 14. 3 Solvent Extractions
  • 3. 14. 4 Determination of Alcohol Soluble Extractive
  • 3. 14. 5 Determination of Water Soluble Extractive
  • 3. 14. 6 Determination of Etl er Soluble Extractive
  • 3. 14. 7 Determination of chloroform Soluble Extractive
  • 3.15 Ash Tests
  • 3. 15. 1 Determination of Total Ash
  • 3. 15. 2 Determination of Acid Insoluble Ash.
  • 3. 15. 3 Determination of Water Soluble Ash.
  • 3. 15. 4 Presentation of Results
  • 3. 16 Isozyme Studies
  • 3. 16. 1 Sample Preparation
  • 3. 16. 2 Staining
  • 3. 16. 3 Presentation of Results
  • 4. RESULTS
  • 4.1 ADENIA HONDALA (GARETN.) DE WILLD
  • 4.1.1 Selection of basal media
  • 4.1.2 Caulogenesis
  • 4.1.2.1 Effect of the position of nodal segments on direct shooting
  • 4.1.2.2 General Response of explants
  • 4.1.2.3 Effect of plant growth regulators
  • 4.1.2.4 Enhancement of shoot induction by additive supplementation
  • 4.1.2.5 Comparative effect of Additives
  • 4.1.2.6 Effect of different strength of MS medium
  • 4.1.3 Callogenesis
  • 4.1.3.1 Effect of Plant Growth Regulators (PGR)
  • 4.1.3.2 Comparative analysis of optimum treatments
  • 4.1.3.3 Morphology of calli
  • 4.1.3.4 Development of callus
  • 4.1.4 Indirect Organogenesis
  • 4.1.4.1 General response of calli
  • 4.1.4.2 Effect of BAP on shoot induction
  • 4.1.4.3 Effect of Kn on shoot induction
  • 4.1.4.4 Effect of 2iP on shoot induction
  • 4.1.4.5 Optimization of BAP and Kn
  • 4.1.4.6 Optimization of BAP and 2iP
  • 4.1.4.7 Enhancement of shoot induction by additive supplementation
  • 4.1.4.8 Effect of different strength of MS medium
  • 4.1.4.9 Development of Shoots by Indirect Organogenesis
  • 4. 1.5 Rhizogenesis
  • 4.1.5.1 Effect of Plant growth regulators
  • 4.1.5.2 Effect of different strength of MS medium
  • 4.1.5.3 Nature of Roots.
  • 4.1.6 Somatic embryogensis
  • 4.1.6.1 Direct Somatic Embryogenesis
  • 4.1.6.2 Indirect Somatic Embryogenesis
  • 4.1.7 Acclimatization and Planting out
  • 4.1.8 Influence of explanting period
  • 4.1.9 Histology
  • 4.1.9.1 Histology of direct shoot induction
  • 4.1.9.2 Ontogeny of callus
  • 4.1.9.3 Histology of Non organogenic callus
  • 4.1.9.4 Histology of Organogenic callus
  • 4.1 9.5 Histology of root inducing calli
  • 4.1.9.6 Ontogeny of direct somatic embryos
  • 4.1.9.7 Ontogeny of Indirect somatic embryos
  • 4.1.10 Histochemistry
  • 4.1.10.1 Histochemical Localization in stem and root of Adenia hondala
  • 4.1.10.2 Histochemical localization in the non-organogenic calli
  • 4.1.10.3 Histochemical localization in organogenic callus
  • 4.1.11 Biochemical Estimations
  • 4.1.11.1 Metabolite mobilization in various cultures of Adenia hondala
  • 4.1.12 Quality Analysis
  • 4.1.12.1 Chromatographic separation of constituents
  • 4.1.12.2 Phytochemical studies
  • 4.1.12.3. Thin Layer Chromatography
  • 4.1.12.4 Physiochemical standards analysis
  • 4.1.13 Isozyme Studies
  • 4.1.13.1 Peroxidase
  • 4.1.13.2 Esterase
  • TABLES 1-111
  • Table - 1 Chemical composition of various nutrient media used
  • Table - 2 Media Strength, Plant Growth Regulators and other supplements tried in cultures of Adenia hondala
  • Table - 3 Media Strength, Plant Growth Regulators and other Supplements tried in cultures of Baliospermum montanum
  • Table - 4 Staining methods followed for general Histology, Histochemistry and Histoenzymology
  • Table - 5 Frequency of establishment and general response of various explants on different basal media
  • Table - 6 Effect of different nodal segments on direct shooting in Adenia hondala
  • Table - 7 Effect of different PGR on leaf, node and inter node for direct shoot induction in Adenia hondala
  • Table - 8 Effect of BAP on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 9 Effect of Kn on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 10 Effect of 2iP on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 11 Effect of BAP + IAA on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 12 Effect of BAP + NAA on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 13 Effect of BAP + 2, 4-D on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 14 Effect of Kn + IAA on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 15 Effect of Kn + NAA on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 16 Effect of Kn + 2, 4-D on shoot induction from nodal segments in Adenia hondala on MS medium
  • Table - 17 Effect of 2iP + IAA on shoos induction from nodal segments in Adenia hondala on MS medium
  • Table - 18 Effect of 2iP + NAA on shoat induction from nodal segments in Adenia hondala on MS medium
  • Table - 19 Effect of 2iP + 2, 4-D on• shoat induction from nodal segments in Adenia hondala on MS medium
  • Table - 20 Effect of BAP, Kn and 2iPo? 1 shoot induction in Adenia hondala on MS medium
  • Table - 21 Effect of Coconut water or, shoot induction from nodal segments of Adenia hondala in the optimized. medium
  • Table - 22 Effect of CAP on shoot induction from nodal segments of Adenia hondala •in the optimized medium
  • Table - 23 Effect of Biotin on shoot induction from nodal segments of Adenia hondala in the optimized medium
  • Table- 24 Effect of GA3 on shoot induction from nodal segments of Adenia hondala in the optimized medium
  • Table - 25 Effect of ABA on shoot induction from nodal segments in Adenia hondala in the optimized medium
  • Table - 26 Effect of MS strength on shoot induction from nodal segments of Adenia hondala in the optimized medium
  • Table - 27 Effect of IAA on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 28 Effect of IAA on callus induction from inter nodal segments of Adenia hondala on MS medium
  • Table - 29 Effect of IAA on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 30 Effect of NAA on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 31Effect of NAA on callus induction from intemodal segments of Adenia hondala on MS medium
  • Table - 32 Effect of NAA on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 33 Effect of 2, 4-D on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 34 Effect of 2, 4-D on callus induction from internodal segments of Adenia hondala on MS medium
  • Table 35 Effect of 2, 4-D on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 36 Effect of IAA + BAP on callus induction from leaf explants of Adenia hondala on MS medium
  • Table- 37 Effect of IAA + BAP on callus induction from internodal segments of Adenia hondala on MS medium
  • Table 38 Effect of IAA+ BAP on callus induction from nodal segments of Adenia hondala on MS medium
  • Table 39 Effect of IAA + Kn on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 40 Effect of IAA + Kn on callus induction from internodal segments of Adenia hondala on MS medium
  • Table - 41 Effect of IAA + Kn on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 42 Effect of IAA + 2iP on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 43 Effect of IAA + 2iP on callus induction from internodal explants of Adenia hondala on MS medium.
  • Table - 44 Effect of IAA + 2iP on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 45 Effect of NAA + BAP on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 46 Effect of NAA + BAP on callus induction from internodal segments of Adenia hondala on MS medium
  • Table - 47 Effect of NAA + BAP on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 48 Effect of NAA + Kn on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 49 Effect of NAA + Kn on callus induction from internodal segments of Adenia hondala on MS medium
  • Table - 50 Effect of NAA + Kn on call _is induction from nodal segments of Adenia hondala on MS medium
  • Table - 51 Effect of NAA ± 21P on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 52 Effect of NAA + 2iP on callus induction from internodal segments of Adenia hondala on MS medium
  • Table - 53 Effect of NAA + 2iP on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 54 Effect of 2, 4- D + BAP on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 55 Effect of 2, 4 D + BAP on callus induction from internodal segments of Adenia hondala on MS medium
  • Table - 56 Effect of 2, 4 D + BAP on callus induction from nodal segments of Adenia hondala on MS medium
  • Table -57 Effect of 2, 4 D + Kn on callus induction from leaf explants of Adenia hondala on MS medium
  • Table -58 Effect of 2, 4 D + Kn on callus induction from internodal segments of Adenia hondala on MS medium
  • Table -59 Effect of 2, 4 D + Kn on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 60 Effect of 2, 4 D + 2iP on callus induction from leaf explants of Adenia hondala on MS medium
  • Table - 61 Effect of 2, 4 D + 2iP on callus induction from internodal segments of Adenia hondala on MS medium
  • Table - 62 Effect of 2, 4 D + 2iP on callus induction from nodal segments of Adenia hondala on MS medium
  • Table - 63 Response of various PGR combinations on Indirect organogenesis in Adenia hondala
  • Table - 64 Effect of BAP on shoot induction in Adenia hondala on MS medium
  • Table - 65 Effect of Kn on shoot induction in Adenia hondala on MS medium
  • Table - 66 Effect of 2iP on shoot induction in Adenia hondala on MS medium
  • Table - 67 Optimization of BAP and Kn combinations for indirect organogenesis in Adenia hondala on MS medium
  • Table - 68 Optimization of BAP + 2iP combinations for indirect organogenesis in Adenia hondala on MS medium
  • Table - 69 Effect of Coconut water on indirect organogenesis in Adenia hondala in the optimized medium
  • Table - 70 Effect of CAP on indirect organogenesis in Adenia hondala in the optimized medium
  • Table - 71 Effect of TDZ on indirect organogenesis in the optimized medium
  • Table - 72 Effect of GA3 on indirect organogenesis in Adenia hondala in the optimized medium
  • Table - 73 Effect of ABA on indirect organogenesis in Adenia hondala in the optimized medium
  • Table - 74 Effect of IBA on rhizogenesis in Adenia hondala on MS medium
  • Table - 75 Effect of IBA on rhizogenesis in Adenia hondala on MS medium
  • Table. - 76 Effect of IAA on rhizogenesis in Adenia hondala on MS medium
  • Table - 77 Effect of different strength of MS on rhizogenesis in Adenia hondala on MS medium
  • Table - 78 Somatic embryogenesis in Adenia hondala
  • Table - 79 Effect of NAA + BAP on direct somatic embryogenesis from leaf explants of Adenia hondala on MS medium
  • Table - 80 Effect of coconut water on somatic embryo induction from leaf explants of Adenia hondala on MS medium
  • Table - 81 Effect of GA3 on somatic embryo induction from leaf explants of Adenia hondala on MS medium
  • Table - 82 Effect of TDZ on embryo induction from leaf explants of Adenia hondala in the optimized medium
  • Table - 83 Effect of ABA on embryo induction from leaf explants of Adenia hondala in the optimized medium
  • Table - 84 Effect of CH on embryo induction from leaf explants of Adenia hondala in the optimized medium
  • Table - 85 Effect of MS strength from leaf explants of Adenia hondala in the optimized medium
  • Table - 86 Effect of NAA + BAP on Indirect somatic embryogenesis in Adenia hondala on MS medium
  • Table - 87 Effect of 2, 4-D + Kn on Indirect Somatic Embryogenesis in Adenia hondala on MS medium
  • Table - 88 Effect of coconut water on embryo induction in Adenia hondala on MS medium
  • Table - 89 Effect of GA3 on embryo induction in Adenia hondala on MS medium
  • Table - 90 Effect of TDZ on embryo induction in Adenia hondala on MS medium
  • Table - 91 Effect of ABA on embryo induction in Adenia hondala on MS medium
  • Table - 92 Effect of CH on embryo induction in Adenia hondala on MS medium
  • Table - 93 Effect of MS strength in Adenia hondala on MS medium
  • Table - 94 Effect of PGR on embryo maturation in Adenia hondala on MS medium
  • Table - 95 Optimisation of NAA + BAP on embryo maturation in Adenia hondala on MS medium
  • Table - 96 Effect of CW on embryo maturation in Adenia hondala on MS medium
  • Table - 97 Effect of ABA on embryo maturation in Adenia hondala on MS medium
  • Table - 98 Effect of Sucrose on embryo maturation in Adenia hondala on MS medium
  • Table - 99 Effect of GA3 on embryo maturation in Adenia hondala on MS medium
  • Table - 100 Effect of MS strength on embryo maturation in Adenia hondala on MS medium
  • Table - 101 Evaluation of different planting substrates for acclimatisation of in vitro shoots of adenia hondala
  • Table - 102 Influence of explanting period on culture establishment of adenia hondala on ms supplements with 0.5 mgl-1 bap + 0.5 mgl-1 kn + 1 mgl-l2ip +10% CW
  • Table.- 103 Intensity of metabolite and enzyme localization in stem and root of Adenia hondala
  • Table - 104 Intensity of metabolite and enzyme localization in the Non organogenic call] of Adenia hondala
  • Table - 105 Intensity of metabolite and enzyme localization in the organogenic callus of Adenia hondala
  • Table - 106: Qualitative chemical examination of various extracts obtained by successive solvent extraction of stem of Adenia hondala
  • Table - 107: Qualitative chemical examination of: various extracts obtained by successive solvent extraction of leaves of Adenia hondala
  • Table - 108: Qualitative chemical examination of various extracts obtained by successive solvent extraction of tubers of Adenia hondala
  • Table - 109: Qualitative chemical examination of various extracts obtained by successive solvent extraction of regenerated shoots of Adenia hondala
  • Table - 110: Qualitative chemical examination of various extracts obtained by successive solvent extraction of non organogenic calli of Adenia hondala
  • Table - 111 Analysis of physiochemical standards in in viva plant and regenerated plants of Adenia hondala.
  • FIGURES 1-26
  • Fig. 1 Adenia hondala (Gaertn) de Willde.
  • Fig. 2 Multiple shoot induction directly on nodal segments of Adenia hondala
  • Fig. 3 Induction of callus in Adenia hondala
  • Fig. 4 Induction and elongation of shoot buds in Adenia hondala from callus
  • Fig. 5 In vitro root induction on regenerated plants of Adenia hondala
  • Fig. 6 Somatic embryogenesis in Adenia hondala
  • Fig. 7 Hardening of the regenerated plants of Adenia hondala in solicit
  • Fig. 8 Histology of shoot regeneration in Adenia hondala.
  • Fig. 9-Histology of call] of Adenia hondala
  • Fig. 10 Histological studies of different stages of shoot regeneration from organogenic calli of Adenia hondala
  • Fig. 11 Ontogeny of direct somatic embryogenesis from leaf explants of Adenia hondala
  • Fig. 12. Ontogeny of indirect somatic embryogenesis from friable calli of Adenia hondala
  • Fig. 13 Localization of metabolites and enzymes in the root tubers of Adenia hondala
  • Fig. 14 Localization of metabolites and enzymes in the. non-organogenic calli of Adenia hondala
  • Fig. 15 Localization of metabolites and enzymes in the organogenic calli of Adenia hondala
  • Fig. 16 Thin layer chromatography of Adenia hondala
  • Fig. 17. Froth formation showing indicative test for saponins and Thin layer chromatography showing saponins specific spot
  • Fig. 18 Electrophoretogram showing isozymes of peroxidase and esterases in explants and in vitro cultures of Adenia hondala
  • Fig. 19 Zymogram and schematic representation of various developmental stages in cultures of Adenia hondala
  • Fig. 20 Comparison of Optimum treatments of PGR combination on callogenesis from leaf explants of Adenia hondala.
  • Fig. 21 Comparison of Optimum treatments of PGR combination on callogenesis from internodal explants of Adenia hondala
  • Fig. 22 Comparison of Optimum treatments of PGR combination on callogenesis from nodal explants of Adenia hondala
  • Fig. 23 Metabolite mobilization in direct organogenic cultures of Adenia hondala
  • Fig. 24 Metabolite mobilization in organogenic callus cultures of Adenia hondala
  • Fig. 25 Metabolite mobilization in embryogenic cultures of Adenia hondala
  • Fig. 26 Metabolite mobilization in non-organogenic cultures of Adenia hondala
  • 4.2 BALIOSPERMUM MONTANUM Muell. Arg
  • 4.2.1 Selection of Basal Media
  • 4. 2. 2 Caulogensis
  • 4.2.2.1 Effect of position of rodal segments on direct shooting
  • 4.2.2.2 General response of explants
  • 4.2.2.3 Direct Regeneration from nodal segments.
  • 4.2.2.3.1 Effect of Plant Growth Regulator
  • 4.2.2.3.2. Enhancement of shoot induction by additive supplementation
  • 4.2.2.4 Direct Regeneration from leaf explants.
  • 4.2.2.4.1 Optimization of Kn and IAA
  • 4.2.2.4.2. Enhancement of shoot induction by additive supplementation
  • 4.2.3. Callogenesis
  • 4.2.3.1 Effect of Plant Growth Regulators.
  • 4.2.3.2 Comparative analysis of optimum treatments in callogenesis
  • 4.2.3.3 Morphology of calli
  • 4.2.3.4 Development of callus;
  • 4.2.4 Indirect organogenesis
  • 4.2.4.1 General response of calli
  • 4.2.5 Rhizogenesis
  • 4.2.5.1 Effect of Plant growth regulators
  • 4.2.5.2 Nature of Roots.
  • 4.2.6 Somatic Embryogenesis
  • 4.2.6.1 Optimization of NAA and Kn
  • 4.2.6.2 Optimization of IAA and TDZ
  • 4.2.6.3 Enhancement of embryo induction by additive supplementation
  • 4.2.6.4 Embryo maturation
  • 42.6.5 Optimization of Kn + NAA
  • 4.2.6.6 Optimization of TDZ + NAA
  • 4.2.6.7 Enhancement of embryo maturation by additive supplementation.
  • 4.2.7 Acclimatization and Planting out
  • 4.2.8 Comparative study of efficiency of regeneration pathway
  • 4.2.9 Histology
  • 4.2.9.1 Direct regneration from nodal segments
  • 4.2.9.2 Ontogeny of callus
  • 4.2.9.3 Ontogeny of direct organogenesis from leaf explants
  • 4.2.9.4 Ontogeny of somatic embryogenesis.
  • 4.2.10 Histochemistry
  • 4.2.10.1 Histochemical and Histoenzymological localization in direct organogenic cultures
  • 4.2.10.2 Histochemical and Histoenzymological localization in root forming callus
  • 4.2. 10.3 Histochemical and Histoenzymological localization in non organogenic callus
  • 4.2.10.4 Histochemical and Histoenzymological localization in nodular callus
  • 4.2.11 Metabolite mobilization in various cultures of B. montanum
  • 4.2.12 Quality Analysis
  • 4.1 12.1 Chromatographic separation of constituents
  • 4.1 12. 2 Phytochemical studies
  • 4.2.12.3 Thin Layer Chromatography
  • 4.2.12.4 Physiochemical standards analysis
  • 4.2.13 Isozymes studies
  • 4.2.13.1 Peroxidase
  • 4.2.13.2 Esterase
  • TABLES 112 - 204
  • Table - 112 General response of various explants of Baliospermum montanum on different basal media (after 30 days)
  • Table - 113 Effect of different nodal segment explants on direct shooting in Baliospermum montanum on MS medium
  • Table - 114 Effect of different PGR on leaf, node and inter node explants for direct shoot induction in Baliospermum montanum on MS medium
  • Table - 115 Effect of BAP on direct organogenesis from nodal segments in Baliospermum montanum -on MS medium
  • Table - 116 Effect of Kn on direct organogenesis from nodal segments in Baliospermum montanum on MS medium
  • Table - 117 Effect of 2iP on direct organogenesis from nodal segments in Baliospermum montanum on MS medium
  • Table - 118 Effect of BAP + NAA on in vitro shoot induction from nodal segments in Baliospennum montanum on MS medium
  • Table - 119 Effect of BAP + 2, 4-D on in vitro shoot induction from nodal segments in Baliospermum montanum on ISIS medium
  • Table - 120 Effect of Kn + NAA on in vitro shoot induction from nodal segments in Baliospermum montanum on MS medium
  • Table - 121 Effect of Kn + 2, 4-D on in vitro shoot induction from nodal segments in Baliospermum montanum on MS medium
  • Table - 122 Effect of 2iP +NAA on in vitro shoot induction from nodal segments in Baliospermum montanum on MS medium
  • Table - 123 Effect of 2iP +2, 4-D on in vitro shoot induction from nodal segments in Baliospermum montanum on MS medium
  • Table - 124 Effect of BAP, Kn and 2iP on shoot induction from nodal segments in Baliospermum montanum on MS medium
  • Table - 125 Effect of coconut water or. shoot induction from nodal segments in Baliospermum montanum on MS medium
  • Table - 126 Effect of CAP on shoot induction from nodal segments in Baliospermum montanum on MS medium
  • Table -127 Effect of Biotin on shoot induction from nodal segments in Baliospermum montanum on MS medium
  • Table - 128 Effect of GA3 on shoot induction from nodal segments in Baliospermum montanum on MS medium,
  • Table - 129 Effect of ABA on shoot induction from nodal segments in Baliospermum montanum on MS.medium
  • Table - 130 Effect of Kn + IAA on shoot induction on leaf explants of Baliospermum montanum on MS medium
  • Table - 131 Effect of Coconut water on shoot induction from leaf explants of Baliospermum montanum in optimized medium
  • Table - 132 Effect of CAP on shoot induction from leaf explants of Baliospermum montanum in optimized medium
  • Table - 133 Effect of Biotin on shoot induction from leaf explants of Baliospermum montanum in optimized medium
  • Table - 134 Effect of GA3 on shoot induction from leaf explants of Baliospermum montanum in optimized medium
  • Table - 135 Effect of ABA on shoot induction from leaf explants of Baliospermum montanum in optimized medium
  • Table - 136 Effect of IAA on callogenesis from Leaf explants of Baliospermum montanum on MS medium
  • Table - 137 Effect of IAA on callogenesis from internodal segments of Baliospermum montanum on MS medium
  • Table - 138 Effect of IAA on callogenesis from nodal segments of Baliospermum montanum on MS medium
  • Table - 139 Effect of NAA on callogenesis from leaf explants of Baliospermum montanum on MS medium
  • Table - 140 Effect of NAA on callogenesis from inter nodal segments of Baliospermum montanum on MS medium
  • Table - 141 Effect of NAA on callogenesis from nodal segments of Baliospermum montanum on MS medium
  • Table - 142 Effect of 2, 4-D on callogenesis from leaf explants Baliospermum montanum on MS medium
  • Table - 143 Effect of 2, 4-D on callogenesis from inter nodal segments Baliospermum montanum on MS medium
  • Table - 144 Effect of 2, 4-D on callogenesis from nodal segments Baliospermum montanum on MS medium
  • Table - 145 Effect of IAA + BAP on callogenesis from leaf explants of Baliospermum montanum on MS. medium
  • Table - 146 Effect of IAA + BAP on callogenesis from internodal segments of Baliospermum montanum on MS medium
  • Table - 147 Effect of IAA + BAP on callogenesis from nodal segments of Baliospermum montanum on MS medium
  • Table - 148 Effect of IAA + Kn on callogenesis leaf explants of Baliospermum montanum on MS medium
  • Table - 149 Effect of IAA + Kn on internodal segments of Baliospermum montanum on MS medium
  • Table - 150 Effect of IAA + Kn on nodal segments of Baliospermum montanum on MS medium
  • Table - 151 Effect of IAA + 2iP on leaf explants of Baliospermum montanum on MS medium
  • Table - 152 Effect of IAA + 2iP on internodal segments of Baliospermum montanum on MS medium
  • Table - 153 Effect of IAA + 2iP on nodal segments of Baliospennum montanum on MS medium
  • Table - 154 Effect of NAA + BAP on leaf explants of Baliospermum montanum on MS medium
  • Table - 155 Effect of NAA + BAP on internode segments of Baliospermum montanum on MS medium
  • Table - 156 Effect of NAA + BAP on nodal segments of Baliospermum montanum on MS medium
  • Table - 157 Effect of NAA + Kn on leaf explants of Baliospermum montanum on MS medium
  • Table -158 Effect of NAA + Kn on internodal segments of Baliospermum montanum on MS medium
  • Table -159 Effect of NAA + Kn on nodal segments -of Baliospermum montanum on MS medium
  • Table -160 Effect of NAA + 2iP on leaf segments of Baliospermum montanum on MS medium
  • Table - 161 Effect of NAA + 2iP on internodal segments of Baliospermum montanum on MS medium
  • Table -162 Effect of NAA + 2iP on nodal segments of Baliospermum montanum on MS medium
  • Table - 163 Effect of 2, 4 D + BAP on callus induction from leaf explants of Baliospermum montanum on MS medium.
  • Table - 164 Effect of 2, 4 D + BAP on internodal segments of Baliospermum montanum on MS medium
  • Table 165 Effect of 2, 4 D + BAP on nodal segments of Baliospermum montanum on MS medium
  • Table - 166 Effect of 2, 4 D + Kn on leaf explants of Baliospermum montanum on MS medium
  • Table - 167 Effect of 2, 4 D + Kn on internodal segments of Baliospermum montanum on MS medium
  • Table - 168 Effect of 2, 4 D + Kn on nodal segments of Baliospermum montanum on MS medium
  • Table - 169 Effect of 2, 4 D + 2iP on leaf explants of Baliospermum montanum on MS medium
  • Table - 170 Effect of 2, 4 D +2iP on internodal segments of Baliospermum montanum on MS medium
  • Table - 171 Effect of 2, 4 D + 2iP on nodal segments of Baliospermum montanum on MS medium
  • Table - 172 Indirect Organogenesis In Baliospermum montanum
  • Table - 173 Effect of IBA on root induction in Baliospermum montanum on MS medium
  • Table - 174 Effect of NAA on root induction in Baliospermum montanum on MS medium
  • Table - 175 Effect of IAA on root induction in Baliospermum montanum on MS medium
  • Table - 176 Effect of MS on root induction in Baliospermum montanum
  • Table - 177 Somatic Embryogenesis In Baliospermum montanum
  • Table - 178 Effect of NAA + TDZ on somatic embryo induction in Baliospermum montanum on MS medium
  • Table -179 Effect of NAA + Kn on somatic embryo induction in Baliospermum montanum on MS medium
  • Table - 180 Effect of CW on embryo induction in Baliospermum montanum on MS medium
  • Table - 181 Effect of CAP on embryo induction in Baliospermum montanum on MS medium
  • Table - 182 Effect of Biotin on embryo induction in Baliospermum montanum on MS medium
  • Table - 183 Effect of GA3 on embryo induction in Baliospermum montanum on MS medium
  • Table - 184 Effect of MS strength with control media in Baliospermum montanum on MS medium
  • Table - 185 Effect of PGR on embryo maturation in Baliospermum montanum on MS medium
  • Table - 186 Effect of Kn + NAA on embryo maturation in Baliospermum montanum
  • Table - 187 Effect of TDZ + NAA on embryo maturation in Baliospermum montanum
  • Table - 188 Effect of coconut water an embryo maturation in Baliospermum montanum in optimized media
  • Table - 189 Effect of CAP on embryo maturation in Baliospermum montanum in optimized media
  • Table - 190 Effect of GA3 on embryo maturation in Baliospermum montanum in optimized media
  • Table - 191 Effect of ABA on embryo maturation in Baliospermum montanum in optimized media
  • Table - 192 Effect of sucrose on embryo maturation in Baliospermum montanum in optimized medium
  • Table - 193 Effect of MS strength on embryo maturation in Baliospermum montanum in optimized medium
  • Table - 194 Evaluation of different planting substrates for acclimatization of in vitro shoots of Baliospermum montanum
  • Table - 195 Effect of subculture on micropropagation of Adenia hondala and Baliospermum montanum
  • Table - 196 Intensity of metabolite and enzyme localization during direct organogenesis in Baliopsermum montanum
  • Table - 197 Intensity of metabolite and enzyme localization in root forming callus of Baliopsermum montanum
  • Table - 198 Intensity of metabolite and enzyme localization in non-organogenic callus of Baliospermum montanum
  • Table - 199 Intensity of metabolite and enzyme localization in nodular calli of Baliopsermum montanum
  • Table - 200: Qualitative chemical examination of various extracts obtained by successive solvent extraction of leaves of Baliospermum montanum
  • Table - 201 Qualitative chemical examination of various extracts obtained by successive solvent extraction of the roots of Baliopsermum montanum Table - 202 Qualitative chemical examination of various extracts obtained by successive solvent extraction of the leaves of regenearated shoots of Baliospermum montanum
  • Table - 202 Qualitative chemical examination of various extracts obtained by successivesolvent extraction of the leaves of regenerated shoots of Baliospemum montanum
  • Table - 203 Qualitative chemical examination of various extracts obtained by successive solvent extraction of the leaves of regenearated shoots of Baliospermum montanum
  • Table - 204 Physiochemical Analysis of different samples of Baliospermum monatnum
  • FIGURES 27 - 52
  • Fig. 27 Baliospermum montanum Muell. Arg.
  • Fig. 28 Direct regeneration from nodal segments in Baliospermum montanum
  • Fig. 29 Direct regeneration from leaf segments of Baliospermum montanum
  • Fig. 30 White compact calli derived from abaxial portion of Baliospermum montanum
  • Fig. 31 Callus induction from leaf explants of Baliospermum montanum
  • Fig. 32 Rhizogensis in calli derived from various explants of Baliospermum montanum
  • Fig. 33 Indirect somatic embryogenesis in Baliospermum montanum
  • Fig. 34 Rooting of the plantlets of Baliospermum montanum obtained through regeneration pathways other than somatic embryogenesis
  • Fig. 35 Hardening of regenerated shoots of Baliospermum montanum
  • Fig. 36 Histology of shoot development in Baliospermum montanum
  • Fig. 37 General histology of the regenerated shoot of Baliospermum montanum. L.S of leaf showing calli.
  • Fig. 38 Stages in the development of somatic embryogenesis in Baliospermum montanum
  • Fig. 39 T.S. of root inducing calli of Baliospermum montanum showing localization of metabolites and enzymes.
  • Fig. 40 T.S. of non-organogenic callus showing metabolites and enzyme deposition in Baliospermum montanum
  • Fig. 41 T.S. of nodular calli of Baliospermum montanum showing metabolite and enzyme localization.
  • Fig. 42 Thin layer chromatography of Baliospermum montanum
  • Fig. 43 Test for saponins in in vivo roots of Baliospermum montanum and thin layer chromatography showing saponin specific spot formation.
  • Fig. 44 Electrophoretogram showing isozymes of peroxidase and esterases in explants and in vitro cultures of Baliospermum montanum
  • Fig. 45 Zymogram and schematic representation of various developmental stages in cultures of Baliospermum montanum
  • Fig. 46 Comparison of Optimum treatments of PGR combination on callogenesis from leaf explants of Baliospermum montanum.
  • Fig. 48 Comparison of Optimum treatments of PGR combination on callogenesis from nodal explants of Baliospermum montanum
  • Fig.49 Metabolite mobilization in direct organogenic cultures of Baliospermum montanum
  • Fig. 50 Metabolite mobilization in root forming callus of Baliospermum montanum
  • Fig. 51 Metabolite mobilization in non organogenic cultures of Baliospermum montanum
  • Fig. 52 Metabolite mobilization in nodular callus cultures of Baliospermum montanum
  • 5. DISCUSSION
  • 5. 1 Selection of Basal media
  • 5. 2 Micropropagation through direct regeneration
  • 5.2.1 Explant selection and response
  • 5.2.2 Position of the Node
  • 5.2.3 Influence of Plant growth Regulators
  • 5. 2.3. 1 Nodal cultures
  • 5. 2.3. 2 Basal Callus Formation
  • 5.2.3.3 Role of Subculture in multiplying Shoot number
  • 5.2.3.4 Leaf Cultures
  • 5.2.4. Effect of Additives in Direct Regeneration
  • 5.2.5 Influence of Explanting Period
  • 5.3 Callogenesis
  • 5.4 Indirect Organogenesis
  • 5.5 Rooting
  • 5. 6 Somatic Embryogenesis
  • 5. 7 Acclimatization of Micropropagated Shoots
  • 5.8 Histology
  • 5.9 Histochemistry and Histoenzymology
  • 5.10 Metabolite mobilization
  • 5.11 Phytochemical analysis
  • 5.12 Isozyme studies
  • 6. SUMMARY
  • REFERENCES