• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 203
 
Full Screen

  • Title
  • CERTIFICATE 1
  • CERTIFICATE-2
  • DECLARATION
  • CONTENTS
  • ACKNOWLEDGEMENT
  • ABBREVIATIONS
  • 1 On Conformational Investigations of Peptides
  • 1.1 Nuclear Magnetic Resonance
  • 1.2 Computational Studies of Peptides
  • 2 Biological background
  • 2.1 Bovine seminalplasmin: Background
  • 2.2 Human Lactoferrin: Background
  • 2.2.1 Sequence conservation among lactoferrins
  • 3 Peptide Synthesis
  • 3.1 Introduction
  • 3.2 Solid Phase Peptide Synthesis
  • 3.2.1 Solid-phase synthesis
  • 3.2.2 Overview of peptide synthesis on solid phase
  • 3.2.3 Protecting group strategies
  • 3.2.4 The solid phase and the solvent
  • 3.2.5 Attachment to the solid phase
  • 3.2.6 Different synthesis techniques
  • 3.2.7 Peptide bond forming methods and reagents
  • 3.2.8 Monitoring the acylation reaction
  • 3.2.9 Problems encountered during peptide coupling reactions
  • 3.2.10 Release from the solid phase and deprotection of protected groups
  • 3.2.11 Purification and characterization of the synthesized peptide
  • 3.3 Synthesis of Peptides
  • 3.3.1 Experimental
  • 3.3.1.1 Purification of solvents and reagents
  • 3.3.1.2 Preparation of 2% BDDMA cross-linked polystyrene (BDDMA-PS)
  • 3.3.1.3 Functionalization of BDDMA-PS (Chloromethylation)
  • 3.3.1.4 General Methods of Solid Phase Peptide Synthesis
  • 3.3.2 Results and discussion
  • 3.3.2.1 PELLETFL
  • 3.3.2.2 LLETFL
  • 3.3.2.3 FLSEWIG
  • 3.3.2.4 FSASCVPG
  • 3.3.2.5 AVGEQELRGCNQWSGL
  • 3.3.3 Conclusion
  • 4 Conformational analysis of peptides in solution
  • 4.1 Introduction
  • 4.2 Peptide conformation in solution
  • 4.2.1 Definition of peptide and protein conformation
  • 4.2.2 Peptide and protein structures
  • 4.2.3 Linear peptides in solution
  • 4.3 NMR spectroscopy
  • 4.3.1 Conformational information from NMR spectroscopy
  • 4.3.2 One dimensional (1D) NMR experiments
  • 4.3.3 Two dimensional (2D) NMR spectroscopy
  • 4.3.3.1 COSY: Correlated spectroscopy
  • 4.3.3.2 DQF-COSY: Double Quantum Filtered-COSY
  • 4.3.3.3 TOCSY: Total Correlation Spectroscopy
  • 4.3.3.4 NOESY: Nuclear Overhauser Enhancement Spectroscopy
  • 4.3.3.5 ROESY: Rotating frame Overhauser Effect Spectroscopy
  • 4.4 NMR data for peptide and protein structure calculation
  • 4.4.1 Nualear Overhauser Effects (NOEs)
  • 4.4.2 Scalar coupling constants
  • 4.4.3 Hydrogen bonds
  • 4.4.4 Chemical shifts
  • 4.5 Sequence Specific Resonance Assignment
  • 4.6 Structure Calculation
  • 4.7 Conformational analysis of target peptides derived from bovine seminalplasmin
  • 4.7.1 NMR Analysis of PELLETFL
  • 4.7.1.1 Sequence specific resonance assignments
  • 4.7.1.2 JNHcoupling constants
  • 4.7.1.3 3D structure calculation
  • 4.7.1.4 Conclusion
  • 4.7.2 NMR Analysis of LLETFL
  • 4.7.2.1 Sequence specific resonance assignments
  • 4.7.2.2 JNH Coupling constants
  • 4.7.2.3 3D structure calculation
  • 4.7.2.4 Conclusion
  • 4.7.3 NMR Analysis of FLSEWIG
  • 4.7.3.1 Sequence Specific Resonance Assignments
  • 4.7.3.2 JNH coupling constants
  • 4.7.3.3 3D structure calculation
  • 4.7.3.4 Conclusion
  • 4.8 Conformational analysis of target peptides derived fromhuman lactoferrin
  • 4.8.1 NMR Analysis of FSASCVPG
  • 4.8.1.1 Sequence Specific Resonance assignments
  • 4.8.1.2 Temperature dependence of amide proton resonances
  • 4.8.1.3 JNH coupling constants
  • 4.8.1.4 3D structure calculation
  • 4.8.1.5 Conclusion
  • 4.8.2 NMR analysis of AVGEQELRGCNQWSGL
  • 4.8.2.1 Sequence specific resonance assignments
  • 4.8.2.2 3D structure calculation
  • 4.8.2.3 Conclusion
  • 4.9. Discussion on conformational analysis of target peptides
  • 5 Summary and Observations
  • 5.1 Summary
  • 5.2 Observations
  • 5.2.1 General (hypothetical) inference
  • References