HOME
Search & Results
Full Text
Thesis Details
Page:
329
Full Screen
TITLE
DEDICATION
CERTIFICATE 1
CERTIFICATE-2
DECLARATION
ACKNOWLEDGEMENT
GLOSSARY OF TERMS
CONTENTS
CHAPTER 1 INTRODUCTION
1.1. Fundamentals of transport phenomena
1.2. Factors contributing the transport process
1.2.1 Nature of the polymer
1.2.2 Nature of cross links
1.2.3 Effect of plasticizers
1.2.4 Nature of the penetrant
1.2.5 Fillers
1.2.6 Temperature
1.3. Transport phenomena in different polymeric systems
1.3.1 Diffusion in rubbery polymers
1.3.2 Diffusion in glassy polymers
1.3.3 Diffusion in polymer blends
1.4. Membrane based transport process
Fig. 1.4. Configuration, morphology, transport and permselectivity employed inmembrane science and technology. [H. F. Mark, eta/., Ettcyclopedia ofPolymer Sciettce and Et~gineeri~zVg, o l. 9, John Wiley and Sons, 1986, p. 5731.
1.4.1 Liquid separation by pervaporation
Fig. 1.5. The principle involved in pervaporation process. [M. 0. David, R. Gref, T. Q. Nguyen and J. Neel, Trans. Ichrrn F;. 69, 335 (1991) ].
Fig. 1.6. Solution-difision transport model. J. G. Wijmans and R. W. Baker, J.Membr. Sci., 107, 1 (1995) ].
1.4.2 Vapour permeation
1.4.3 Gas permeation
1.5. Scope of the work
1.6. References
CHAPTER 2 MATERIALS AND EXPERIMENTAL TECHNIQUES
2.1. Materials used
2.1.1 Rubber chemicals
2.1.2 Fillers
2.1.3 Solvents
2.2. Preparation of rubber compounds
2.2.1 Compounding of the mixes
2.2.2 Blend preparation
2.2.3 Curing of the samples
2.2.4 Moulding of samples
2.3. Sorption studies
2.4. Pervaporation
Fig. 2.2. Pervaporation apparatus
2.5. Vapour permeation
2.6. Gas permeation
Fig. 2.3. Gas permeation apparatus
2.7. Blend morphology
2.8. Dynamic mechanical analysis
2.9. Bound rubber measurements
2.10. Physical testings
2.11. NMR measurements
2.12. Determination of the concentration of polysulphidic cross links
2.13. Determination of swelling behaviour of cross linked membranes
2.14. References
3.1. Results and discussion
3.1.1 Effect of nature of cross links
3.1.2 Effect of penetrant size
3.1.3 Mechanism of transport
3.1.4 Diffusivity, sorptivity and permeability
3.1.5 Effect of temperature
3.1.6 Thermodynamic and kinetic parameters
3.1.7 Swelling parameters
3.1.8 Comparison with theory
3.2. References
CHAPTER 4 TRANSPORT OF AROMATIC HYDROCARBONS THROUGH CONVENTIONALLY CROSSLINKED SBR MEMBRANES: EFFECT OF DEGREE OF CROSSLINKING ON SWELLING AND MECHANICAL PROPERTIES
4.1. Results and discussion
4.1.1 Transport properties
4.1.2 Mechanical properties of unswollen, swollen and deswollen SBR membranes
Fig. 4.9. Variation of tensile strength with crosslink density
4.2. References
CHAPTER 5 TRANSPORT OF ALIPHATIC HYDROCARBONS THROUGH STYRENE-BUTADIENE RUBBER: EFFECT OF NATURE OF CROSSLINKS ON SWELLING AND MECHANICAL BEHAVIOUR
5.1. Results and discussion
5.1.1 Effect of the nature of cross links
Fig. 5.2. Schematic model for swelling In defferently cross linked membranes
Fig. 5.4. CNMR spectra of (a) uncured SBR and (b) SBR cured by CV system
5.1.2 Diffusivity and permeability
5.1.3 Effect of temperature
Table 5.6. Arrhenius parameters and thermodynamic constants
5.1.4 Kinetics of sorption
5.1.5 Interaction parameters
5.1.6 Sorption (S), desorption (D), resorption (RS) and redesorption (RD)
5.1.7 Tensile behaviour
Fig. 5.20. Variation of Youngs modulus with crosslinlung systems
Fig. 5.22. Variation of tensile strength with crosslinking systems
5.1.8 Degree of cross linking
5.2. References
CHAPTER 6 THE EFFECT OF TYPE AND DOSAGE OF CARBON BLACK ON THE TRANSPORT BEHAVIOUR OF CROSSLINKED STYRENE BUTADIENE RUBBER
6.1. Results and discussion
6.1.1 Cure characteristics
6.1.2 Sorption results
6.2. References
CHAPTER 7 MOLECULAR TRANSPORT OF AROMATIC HYDROCARBONS THROUGH NYLON 6/ETHYLENE PROPYLENE RUBBER BLENDS
7.1. Results and discussion
7.1.1 Effect of blend ratio
Fig. 7.2. SEM photograph showing the morphology of NylodEPR blends: (a) E30: EPR is dispersed as domains in the continuous nylon matrix; (b) E 5 ~in: t erpenetrating co-continuous morphology and (c) E70: nylonis dispersed as domains in the EPR matrix.
7.1.2 Effect of penetrant size
7.1.3 Effect of temperature
7.1.4 Diffusivity, sorptivity and permeability
7.1.5 Arrhenius, thermodynamic and kinetic parameters
7.1.6 Interaction parameter
7.1.7 Mechanism of transport
7.1.8 Comparison with theory
7.2. References
CHAPTER 8 SBR / NR BLEND MEMBRANES: MORPHOLOGY, MISCIBILITY, AND TRANSPORT BEHAVIOUR
8.1. Results and discussion
8.1.1 Processing characteristics
8.1.2 Morphology of blends
8.1.3 Dynamic mechanical analysis
8.1.4 Transport properties
(a) Effect of blend composition
(b) Dqfusivity, sorptivity and permeability
(e) Effect of temperature
(d) Network choracterkotion
(e) Conrparkon with theory
(f) Sorption (S) -desorption (D) -resorption (RS) -redesorption (RU)
8.1.5 Mechanical properties
Model fitting
8.1.6 Comparison of degree of cross linking estimated from swelling, stress-strain and dynamic mechanical analyses
8.2. References
CHAPTER 9 SEPARATION OF ORGANIC LIQUID MIXTURES BY PERVAPORATION USING STYRENE-BUTADIENE RUBBER / NATURAL RUBBER BLEND MEMBRANES
9.1. Results and discussion
9.1.1 Separation of chlorohydrocarbon-acetone mixtures using differently cross linked SBR / NR (50/50) blend membranes
9.1.1.1 Cure characteristics
9.1.1.2 Physical properties of SBR / NR blend membranes
9.1.1.3 Influence of feed composition and nature of cross links
9.1.2 Separation of alkane-acetone mixtures using conventionally vulcanised SBR / NR blend membranes
9.1.2.1 Pervaporation characteristics of the SBR / NR blend membranes
9.1.2.2 The effect of feed composition
9.1.2.3 Molecular size of the permeating species
9.2. References
CHAPTER 10 TRANSPORT OF CHLORINATED HYDROCARBON VAPOURS THROUGH STYRENE BUTADIENE RUBBER / NATURAL RUBBER BLENDS AND NYLON / ETHYLENE-PROPYLENE RUBBER BLENDS
10.1. Results and discussion
10.1.1 SBR / NR Blend membranes
10.1.1.1 Effect of blend ratio
10.1.1.2 Investigation of the blend morphology
10.1.1.3 Effect of vulcanising systems
10.1.2 Nylon / EPR membranes
10.1.2.1 Effect of blend ratio
10.1.2.2 Effect of compatibilisation
10.1.2.3 Effect of dynamic vulcanisation
10.2. References
CHAPTER 11 PERMEATION OF NITROGEN AND OXYGEN THROUGH SBR, NR AND SBR/NR BLEND MEMBRANES
11.1. Results and discussion
11.1.1 SBR membranes
11.1.1.1 O2 / N2 selectivity of SBR membranes
11.1.2 SBR / NR blends
11.1.3 Effect of blend composition on pure gas permeability
11.1.4 Comparison of pure gas permeability of SBR / NR blends with models for permeation in heterogeneous media
11.1.5 Effect of blend composition on oxygen to nitrogen selectivity
11.2. References
CHAPTER 12 CONCLUSION AND FUTURE OUTLOOK
Future outlook
APPENDICES
APPENDIX 1 List of Publications
APPENDIX 2 Papers presented at National/lnternationalConferences
Curriculum Vitae
Molecular transport of aromatichydrocarbons through crosslinkedstyrene-butadiene rubber membranes