• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 342
 
Full Screen

  • TITLE
  • DEDICATION
  • CERTIFICATE-1
  • CERTIFICATE-2
  • CERTIFICATE 3
  • DECLARATION
  • ACKNOWLEDGEMENT
  • CONTENTS
  • Preface
  • GLOSSARY OF TERMS
  • 1. Introduction
  • 1.1. Definition of composites
  • 1.2. Constituent Materials
  • 1.2.1. Matrices
  • 1.2.1.1. Thermoplastic polymer matrices
  • 1.2.1.2. Thermoset polymer matrices
  • 1.2.2. Reinforcements
  • 1.3. Natural fibres
  • 1.4. Types of natural fibres
  • 1.4.1. Bast fibres
  • 1.4.2. Leaf fibres
  • 1.4.3. Seed fibres
  • 1.5. Microstructure of natural cellulose fibres
  • Fig. 7.7.Structural constitution of natural vegetable fibre cell
  • Fig.1.3. (a) Schematic drawing of the cross section of a piece of sisal leaf
  • Fig.1. 3. (b) Schematic drawing of the inter construction of a bunched sisal fibre
  • 1.6. Chemical composition of natural fibres
  • 1.7. Major issues of natural fibres
  • 1.7.1. Moisture absorption of fibres
  • 1.7.2. Thermal stability of natural fibres
  • 1.7.3. Biodegradation and photodegradation of natural fibres.
  • 1.8. Fibre-matrix interface and interfacial modifications
  • Fig.1.8. Triazine derivative of cellulose fibre
  • 1.9. Fracture mechanism of composite failure
  • 1.10. Green composites
  • Fig.7.17. Typical life cycle of green composites
  • 1.11. Hybrid composites
  • 1.12. Cellulose microfibrils reinforced composites
  • Fig.1.22. Morphology of the cellulose microfibrils before and after silylation
  • 1.13. Scope and objectives of the present work
  • References
  • 2. Materials and Experimental
  • 2.1. Materials
  • 2.1.1. Banana fibres
  • 2.1.2. Glass fibres
  • 2.1.3. Phenol formaldehyde resin
  • 2.1.4. Chemicals:
  • 2.2. Fibre modifications
  • 2.3. Preparation of composites
  • 2.4. Scanning electron microscopy
  • 2.5. Thermo gravimetric analysis -
  • 2.6. Mechanical tests
  • 2.7. Dynamic mechanical analysis
  • 2.8. Water absorption studies
  • 2.9. Aging studies
  • 2.10. Electrical property evaluation
  • 2.11. Extraction of microfibrils and preparation of microcomposites.
  • References
  • 3. Reinforcement with Banana and Glass Fibres: Mechanical Properties
  • ABSTRACT
  • 3.1. Adhesion between fibre and matrix
  • 3.2. Tensile properties
  • 3.2.1. Intrinsic properties of fibres
  • 3.2.2. Effect of fibre length
  • 3.2.3. Effect of fibre loading
  • 3.3. Flexural behavior
  • 3.4. Impact behavior
  • 3.5. Theoretical modeling
  • References
  • 4. Fibre Surface Treatments
  • 4.1. Physical changes: SEM observations
  • Fig.4.1 (a-c) Scanning electron micrographs of (a) untreated (b) mercerized and (c) acetylated banana fibre
  • Fig.4.I. (d-f) Scanning electron micrographs of (d) heat treated (e) latex treated and (f) amino silane treated
  • Fig.4.7. (g) Scanning electron micrograph of vinyl silane treated banana fibre
  • 4.2. Effect of treatments on tensile properties of banana fibre.
  • 4.3. Mechanical properties of composites
  • 4.3.1. Tensile properties
  • Fig.4.8 (a-g) Scanning electron micrographs of the tensile fracture surfaces of untreated and treated banana fibre reinforced phenol formaldehyde composites
  • 4.3.2. Flexural properties
  • 4.3.3. Impact properties
  • References
  • 5. Hybrid Fibre Reinforcement with Banana and Glass Fibres.
  • 5.1. Effect of hybridization on mechanical properties
  • 5.1.1. Tensile properties
  • Fig.5.3 Scanning electron micrographs of tensile fracture surfaces of (a) glassPF and (b) banana/PF composites showing a stronginterface in banana/PF system
  • 5.1.2. Flexural properties
  • 5.1.3. Impact properties
  • 5.2. Effect of banana glass layering
  • 5.2.1. Tensile properties
  • Fig.5.8. Scanning electron micrographs of tensile fracture surfaces of banana/glass hybrid PF composites
  • 5.2.2. Flexural properties
  • 5.2.3 Impact properties
  • 5.3. Theoretical modeling
  • References
  • 6. Dynamic Mechanical Analysis
  • 6.1. Banana fibre reinforced PF composites
  • 6.2. Hybrid composites
  • 6.2.1. Effect of fibre loading
  • 6.2.2. Effect of hybrid layering pattern
  • 6.3. Effect of fibre surface modifications
  • 6.4. Activation energy for glass transition
  • 6.5. Theoretical modeling
  • 6.5.1. Storage modulus
  • 6.5.2. Theoretical prediction of tan δ values
  • References
  • 7. Thermal Stability and Degradation
  • 7.1. Thermal degradation of fibres
  • 7.2. Phenol formaldehyde resin
  • 7.3. Banana / PF composites
  • 7.4. Effect of fibre treatment
  • References
  • 8. Water Sorption Characteristics
  • 8.1. Water uptake of composites
  • 8.1.1. Banana fibre reinforced PF composites
  • Fig.8.3. Scanning electron micrograph of cross section of a banana fibre.
  • 8.1.2. Glass fibre reinforced PF composites
  • 8.1.3. Effect of surface modification of banana fibre.
  • 8.1.4 Effect of hybridization with glass fibre
  • 8.1.5. Effect of hybrid layering pattern
  • 8.2. Kinetics of water sorption
  • 8.3. Transport coefficients
  • References
  • 9. Electrical Properties
  • 9.1. Dielectric constant (ε)
  • 9.1.1. Banana fibre reinforced PF composites
  • 9.1.2. Effect of chemical treatment
  • 9.1.3. Effect of hybridization
  • 9.1.4. Effect of hybrid layering pattern
  • 9.2. Volume resistivity
  • 9.2.1. Banana fibre reinforced PF composites
  • 9.2.2. Effect of chemical treatment
  • 9.2.3. Effect of hybridization
  • 9.2.4. Effect of layering pattern
  • 9.3. Dielectric loss factor
  • References
  • 10. Environmental Durability of Composites
  • 10.1. Banana / glass / hybrid composites
  • 10.1.1. Percentage weight change:
  • 10.1.2. Tensile properties
  • 10.2. Effect of banana fibre modification
  • 10.2.1. Percentage weight change
  • 10.2.2. Tensile properties
  • 10.3. Soil burial and outdoor weathering studies
  • References
  • 11. Microfibrils and Reinforcement
  • 11.1. Mechanical properties of microfibril / PF composites
  • Fig.11.2. Scanning electron micrographs of cellulose microfibrils ( (a) and (b) ) and a rnacrofibre (c)
  • Fig.11.4. Tensile fracture surface of microfibril/PF composites (a) 7%, (b) 13% and (c) I8 %
  • 11.2. Dynamic mechanical properties
  • 11.3. Thermal degradation
  • References
  • 12. Conclusions & Future Scope of Work
  • CURRICULUM VITAE
  • PUBLICATIONS IN INTERNATIONAL JOURNALS
  • Papers Presented In National and lnternational Seminars