• HOME
  • Search & Results
  • Full Text
  • Thesis Details
 
Page: 233
 
Full Screen

  • Title
  • DECLARATION
  • CERTIFICATE
  • DEDICATION
  • CONTENTS
  • ACKNOWLEDGEMENT
  • ABBREVIATIONS
  • 1. Introduction and Review of Literature
  • Introduction
  • Review Of Literature
  • 1.1 Reactive oxygen species in biological systems
  • 1.1.1 Oxidative stress in lipids
  • 1.1.2 Oxidative damage in DNA
  • 1.1.3 Oxidative stress in proteins
  • 1.1 .4 Oxidative stress in other diseases
  • 1.1 .5 Oxidative stress in chemical carcinogenesis
  • Oxidative Stress In Nongenotoxic Hepatocarcinogenesis
  • 1.1.6 Role of ROS in radiotherapy and chemotherapy
  • 1.1.6.1 Radioprotectors and chemoprotecters
  • 1.2 Molecular mechanism of reactive oxygen species
  • 1.2.1 Reactive oxygen species regulate gene expression
  • 1.2.2 Extracellular Reactive oxygen species can initiate cellular signaling
  • 1.2.3 lntracellular reactive oxygen species are generated as second messengers
  • 1.2.4 Mitogenic activated protein (MAP) kinase signaling pathways
  • 1.2.5 Reactive oxygen species and oncogenes
  • 1.3. Antioxidants
  • 1.3.1 Endogenous antioxidants
  • 1.3.1.1 Superoxide dismutase (SOD)
  • 1.3.1.2 Catalase
  • 1.3.1.3 Glutathione system
  • 1.3.1.4 Glutathione peroxidase (GPX)
  • 1.3.1.5 Glutathione reductase (GR)
  • 1.3.1.6 Gulatathone-S-transferase (GST)
  • 1.3.2 Exogenous antioxidants
  • 1.3.2.1 Natural antioxidants
  • 1.3.2.2 Antioxidants of plant origin
  • 1.3.2.3 Synthetic antioxidants
  • 1.4 Cancer chemoprevention
  • 1.4.1 Detoxification Enzymes and Chemoprevention
  • 1.4.1.1 Molecular mechanism of induction
  • 1.4.1.2 Mechanism by which food phytochemicals affect xenobiotic metabolism
  • 1.4.2 Chemoprevention of initiation step
  • 1.4.3 Chemoprevention of promotion and / or progression step
  • 1.5 Emblica officinalis
  • 1.6 Scope of the present study
  • 2. Materials and Methods
  • 2.1. Drugs
  • 2.1.1 Emblica officinalis
  • 2.1.2 Chyavanaprash
  • 2.2 Chemicals
  • 2.3. Cell lines
  • 2.4. Animals
  • 2.5. Instruments
  • 2.6. Antioxidant studies
  • 2.6.1 Determination of superoxide scavenging activity
  • 2.6.1.1 Riboflavin photoreduction method
  • 2.6.1.2 Xanthine - xanthine oxidase method
  • 2.6.2 Measurement of lipid peroxidation and its inhibition
  • 2.6.2.1 Induction of lipid peroxide by Fe2+/ ascorbate system
  • 2.6.2.2 Induction of lipid peroxidation by Fe3+ / ADP-ascorbate system
  • 2.6.3 Measurement of hydroxyl radical scavenging activity
  • 2.7 Inhibition of phase - 1 enzymes
  • 2.7.1 Measurement of aniline hydroxylase (AH) activity
  • 2.7.2 Measurement of aminopyrene - N-demethylase (AD) activity
  • 2.8 Estimation of superoxide generation in peritoneal macrophages
  • 2.9 Detrmination of antiinflammatory activity
  • 2.10 In vitrocytotoxicity studies
  • 2.10.1 Determination of short term in vitro cytotoxicity
  • 2.10.2 Determination of cytotoxicity by tissue culture method
  • 2.11 Determination of tumour reducing activity
  • 2.11.1 Ascites tumour model
  • 2.11.2 Solid turnour model
  • 2.12 Determination of antimutagenic activity
  • 2.12.1 Spizizens salt solution (10X)
  • 2.12.2 Histidine / biotin solution (0.5 mM)
  • 2.12.3 Top agar
  • 2.12.4 Minimal agar plates
  • 2.12.5 Preparation of S9 mixture
  • 2.12.6 Preparation of S9 fraction
  • 2.12.7 Arnes assay procedure
  • 2.13 Determination of DNA-Adduct formation
  • 2.14 Determination of ant carcinogenic activity
  • 2.14.1 Induction of Methylcholanthrene induced sarcoma in mice
  • 2.14.2 N-Nitroso diethylamine (NDEA) induced hepatic cancers in rats
  • 2.15 Determination of hepatoprotective activity
  • 2.15.1 Hepatotoxicity induced by acute CCI, administration
  • 2.16 Induction of liver fibrosis in rats
  • 2.16.1 Carbon tetrachloride (CCI4)
  • 2.16. 2 Thioacetamide (TAA)
  • 2.17 Histological examinations
  • 2.18 Biochemical parameters
  • 2.18.1 Estimation of tissue lipid peroxide
  • 2.18.2 Estimation of protein
  • 2.18.3 Estimation of serum lipid peroxide
  • 2.18.4 Estimation of tissue superoxide dismutase (SOD) activity
  • 2.18.5 Estimation of tissue glutathione peroxidase (GPX) activity
  • 2.18.6 Estimation of tissue glutathione (GSH)
  • 2.18.7 Estimation of cytosolic glutathione - S - transferase (GST) activity
  • 2.18.8 Estimation of cytosolic glutathione reductase (GR) activity
  • 2.18.9 Estimation of Aniline hydroxylase
  • 2.18.10 Estimation of glutamate - pyruvate transaminase (GPT) activity
  • 2.18.11 Estimation of alkaline phosphatase (ALP) activity
  • 2.18.12 Estimation of Y-glutamyl transpeptidase (GGT) activity in tissue
  • 2.18.13 Estimation of serum Y-glutamyl transpeptidase (GGT) activity
  • 2.18.14 Estimation of tissue hydroxyproline
  • 2.18.15 Estimation of serum creatinine
  • 2.18.16 Estimation of Triglycerides in the serum
  • 2.18.17 Estimation of Cholesterol in serum
  • 2.18.17.1 Estimation of HDL - and LDL - Cholesterol
  • 2.18.18 Estimation of total proteins and albumin in serum
  • 2.18.19 Estimation of serum bilirubin
  • 2.18.20 Estimation of serum urea
  • 2.18.21 Determination of haemoglobin
  • 2.18.22 Determination of total count of leukocyte
  • 2.19 Statistical analysis
  • 3. Antioxidant activity of Emblica officinalia
  • 3.1 Introduction
  • 3.2 Material and method
  • 3.2.1 Determination of superoxide scavenging activity
  • 3.2.1.1 Riboflavin photo reduction method
  • 3.2.1.2 Xanthine - xanthine oxidase method
  • 3.2.2 Determination of hydroxyl radical scavenging activity
  • 3.2.3 Determination of lipid peroxidation inhibiting activity
  • 3.2.3.1 Induction by Fe2+ / ascorbate system
  • 3.2.3.2 Induction by Fe3+ - ADP/ascorbate system
  • 3.2.4 lnhibition of superoxide generation by macrophages activated with PMA
  • 3.2.5 Determination of antiinflammatory activity
  • 3.2.6 lnhibition of phase-l enzyme activity in vitro
  • 3.2.6.1 Aniline hydroxylase activity
  • 3.2.6.2 Aminopyrene - N - demethylase activity
  • 3.2.7 Determination of effect of E.O. and CHY extracts on lipid peroxidation and hepatic enzymes in normal rats.
  • 3.2.7.1 Biochemical Analysis
  • 3.2.8 Determination of effect of E.0 and CHY extracts on phenobarbital induced hepatic enzymes
  • 3.2.9 Isolation of active principle from Emblica officinalis
  • 3.2.9.1 Preparation of extract
  • 3.3. Results
  • 3.3.1 Effect of E.0 and CHY extracts on superoxide generation in vitro
  • 3.3.2 Effect of E.0 and CHY extracts on hydroxyl radical generation
  • 3.3.3 Effect of E.0 and CHY extracts on lipid peroxidation
  • 3.3.4 Effect of E.0 extract on the inhibition of PMA induced superoxide production
  • 3.3.5 Antiinflammatory activity of E.0 extract
  • 3.3.6 Effect of E.0 extract on aniline hydroxylase (AH) and arninopyrene-N-demethylase (AD) in vitro
  • 3.3.7 Effect of E.0 and CHY extracts in normal rats
  • 3.3.7.1 Effect of E.0 and CHY extracts on lipid peroxidation
  • 3.3.7.2 Effect of E.0 and CHY extracts on endogenous antioxidant levels
  • 3.3.7.3 Effect of E.0 and CHY extracts on carcinogen metabolizing enzymes
  • 3.3.8 Effect of E.0 and CHY extracts on phenobarbital induced hepatic enzymes
  • 3.3.9 Antioxidant activity of isolated material from E.0
  • 3.4. Disscussion
  • 4. Antitumour activity of Emblica offcinalis
  • 4.1 Introduction
  • 4.2 Materials and methods
  • 4.2.1 Short term in vitro cytotoxicity of E.0 extract
  • 4.2.2 Cytotoxicity of E.0 extract in tissue culture
  • 4.2.3 Effect of E.0 and CHY extracts on ascites tumour development
  • 4.2.4 Effect of E.0 and CHY extracts on solid tumour development
  • 4.2.5 Effect of E. 0 extract on cell cycle division
  • 4.3. Results
  • 4.3.1 Cytotoxic activity of E.0 extract in vitro
  • 4.3.2 Cytotoxicity of E.0 extract in tissue culture
  • 4.3.3 Effect of E.0 and CHY extracts on ascites tumour development
  • 4.3.4 Effect of E.0 and CHY extracts on solid tumour development
  • 4.3.5 Effect of E.0 extract on cell cycle regulation
  • 4.4. Discussion
  • 5. Antimutagenic and anticarcinogenic activity of Emblica ofcinalis
  • 5.1. Inroduction
  • 5.2 Materials and Methods
  • 5.2.1 Preparation of S9 fraction
  • 5.2.2 Antimutagenicity Assay
  • 5.2.3 Determination of DNA - adduct formation
  • 5.2.4 Anticarcinogenic activity
  • 5.2.4.1 20 - Methylcholanthrene induced sarcoma model
  • 5.2.4.2 N - Nitrosodiethylamine (NDEA) induced hepatocarcinogenesis
  • 5.2.4.3 Biochemical parameters
  • 5.3. Results
  • 5.3.1 Antimutagenic activity of E.0 extract
  • 5.3.2 Effect of E.O extract on DNA - adduct formation
  • 5.3.3 Effect of E.O and CHY extracts on 20-rnethylcholanthrene induced sarcoma
  • 5.3.4 Effect of E.O and CHY extracts on N-nitrosodiethylamine (NDEA) induced hepatocarcinogenesis.
  • Fig. 5.3 Effect of E.O and CHY extract on morphology of NDEA treated liver
  • 5.4 Disscussion
  • Fig. 5.4 Effect of E.O and CHY extract on NDEA induced hepatocarcinogenesis
  • 6. Hepato protective effect of Emblica officinalis and Chyavanaprash
  • 6.1. Introduction
  • 6.2. Materials and methods
  • 6.2.1 lnduction of acute hepatotoxicity by carbon tetrachloride
  • 6.2.2 Induction of carbon tetrachloride (CCI4) induced liver fibrosis
  • 6.2.3 Induction of chronic hepatotoxicity by Thioacetamide (TAA)
  • 6.2.4 Biochemical analysis
  • 6.2.5 Histopathological analysis
  • 6.3. Results
  • 6.3.1 Effect of E.O and CHY extracts on acute CCI4 administration
  • 6.3.2 Effect of E.O and CHY extracts on chronic CCl4 administration
  • Fig. 6.1 Effect of E.O and CHY extracts on acute CCl4 administration.
  • 6.3.3 Effect of E.0 and CHY extracts on chronic TAA administration
  • Fig. 6.2 Effect of E.O and CHY extracts on liver fibrosis induced by chronic CCI4 administration.
  • 6.4. Disscussion
  • Fig. 6.3 Effect of E.O and CHY extracts on chronic TAA administration.
  • 7. Radioprotective and chemoprotective effect of Emblica officinalis and Chyavanaprash
  • 7.1 Introduction
  • 7.2 Materials and methods
  • 7.2.1 Radioprotective studies
  • 7.2.2 Chemoprotective studies.
  • 7.3. Results
  • 7.3.1 Radioprotective effect of E.O and CHY extracts
  • Fig.7.1 Effect of E.O and CHY onradiation induced total WBC
  • Fig.7.2 Effect of E.O and CHY on radiation induced change in organ weight
  • 7.3.2 Chernoprotective effect of E.O and CHY extracts
  • Fig. 7.3 Effect of E.O and CHY on cyclophosphamide induced total WBC count
  • 7.4. Discussion
  • Fig.7.4 Effect of E.O. and CHY on cyclocyclophosphamide induced change in organ weight
  • 8. Summary and Conclusion
  • BIBILIOGRAPHY
  • Papers published