HOME
Search & Results
Full Text
Thesis Details
Page:
190
Full Screen
Title
DEDICATION
CERTIFICATE
DECLARATION
ACKNOWLEDGEMENT
ABBREVIATIONS
CONTENTS
1. Introduction and Objectives
1.1 Introduction and Objectives
1.2 Organization of the Thesis
References
2. Recent Trends in Solidifies Peptide Synthesis
2.1 Introduction
2.2 Principles of Merrifield Peptide Synthesis
2.3 The Role of Solid Support
2.4 Resin-peptide Linkages
2.5 Protecting Groups
2.6 Coupling Reagents
2.7 Purification and Characterisation of Peptides
2.8 Problems Associated with SPPS
2.9 Polymer Effect
2.10 Aggregation of Peptide
References
3. Synthesis and Characterisation of GDMA-PMMA Polymer support
3.1 Introduction
3.2 Results and Discussion
3.2.1 Synthesis of GDMA-cross linked polystyrene (GDMA-PMMA) support
3.2.2 Characterisation of GDMA-PMMA support
3.2.3 Functional Group Interconversion
3.2.4 Swelling and Stability Studies of Polymer Support
3.2.5 Time Dependent Incorporation of C-terminal Amino Acid
3.2.6. Time-dependent Fmoc-deprotection
3.2.7 Comparative Synthesis of Peptides
3.2.8 Synthesis of Leu-Ala-Gly-Val
3.2.9 Synthesis of Ala-Ala-Ala-Ala
3.2.10 Synthesis of Leu-Gly-Ala-Leu-GIy-Ala
3.2.11. Conclusion
3.3 Experimental
3.3.1 Materials
3.3.2 Methods for the purification and detection of peptides
3.3.2.1 Column chromatography
3.3.2.2 Thin layer chromatography
a) Ninhydrin
b) Iodine
c) Starch-potassium iodide test
d) Sakaguchi reagent
3.3.2.3 Amino acid analysis
3.3.2.4 Matrix Assisted Laser Desorption / Ionization Mass Spectroscopy
3.3.2.5 Circular Dichroism
3.3.3 Synthesis of Fmoc-amino acids using fluorenyl methyl chloroformate
3.3.4 Synthesis of Fmoc-amino acids using fluorenyl methyl succinimidyl carbonate
3.3.5 Synthesis of GDMA-cross linked polystyrene (GDMA PMMA) support
3.3.5.1 Bulk polymerization
3.3.5.2 Suspension polymerization
3.3.6 Swelling Studies
3.3.7 Stability Studies
3.3.8 Chloro-2% GDMA-PMMA resin
3.3.9 Amino-2% GDMA-PMMA resin
3.3.10 Esterification of Fmoc-amino acid to polymer support using MSNT
3.3.11 Time-dependent Fmoc-deprotection
3.3.12 Time dependent incorporation of amino acids at different: temperatures
3.3.13 Detachment of peptide from the GDMA-PMMA resin
3.3.14 General procedure for peptide synthesis
3.3.15 Synthesis of Leu-Gly-Ala-Val
3.3.16 Synthesis of Ala-Ala-Ala-Ala
3.3.17 Synthesis of Leu-Gly-Ala-Leu-Gly-Ala
References
4. Synthesis of Neurotensin Peptide Analogues on Hydrophilic Polymer Support
4.1 Introduction
4.2 Results and Discussion
4.2.1 Synthesis of Neurotensin Peptide Analogizes on PS-HDODA and PS-TTEGDA Resins Using Boc-Chemistry
4.2.1.1 Boc-chemistry of peptide synthesis
4.2.2 Synthesis of neurotensin (1-13) on PS-HDODA and PS-TTEGDA supports (Glu-Leu-7yrGlu-Asn-Lys-Pro Arg Arg-Pro-lyr-Ile-Leu-OH)
4.2.3 Synthesis of Neuromedin On PS-HDODA and PS-TTEGDA Supports (Tyr--Ile- Lys- Ile-Pro-Leu-OH)
4.2.4 Synthesis of Xenopsin on PS -HDODA and PS-TTEGDA SUPPORT (Glu-Gly-Lys Arg-Pro-Trp-lle Leu-OH)
4.3 Synthesis of Neurotensin Peptide Analogues by Using Fmoc Chemistry
4.4 Synthesis of Aminomethyl GDMA-PMMA
4.4.1 Chloro-2% GDMA-PMMA resin
4.4.2 Amino-2% GDMA-PMMA resin
4.4.3 Esterification of Fmoc-amino acid to polymer support using MSNT
4.4.4 Synthesis of 4- (4-hydroxymethyl-3-methoxyphenoxy) butylamidomethyl 2% GDMA -PMMA support
4.4.5 Fmoc-deprotection
4.4.6 Synthesis of neurotensin (1-13) (Glu-Leu-Tyr Glu-Asn-.Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu-OH)
4.4.7 Synthesis of Neuromedin (Tyr-lle- Lys- lle-Pro Leu-OH)
4.4. 8 Synthesis of Xenopsin on GDMA-PMMA Support (Glu-Gly-Lys-Arg-Pro-Trp-lle-Leu-OH)
4.5 Experimental
4.5.1 Materials
4.5.2 Preparation of amino acid derivatives
4.5.2.1 Boc-amino acids (Schnabels method)
4.5.2.2 Preparation of 1-Hydroxybenzotriazole (HOBt)
4.5.3 General procedure for solid phase peptide synthesis
4.5.4 Synthesis of neurotensin on PS-HDODA and PS-TTEGDA supports (Glu-Leu-TyrGlu-Asn-Lys-Pro Arg-Arg-Pro-Tyr-Ile-Leu-OH)
4.5.5 Synthesis of Neuromedin on PS-HDODA and PS-TTEGDA supports (Tyr-Ile- Lys- Ile-Pro-Leu-OH)
4.5.6 Synthesis of Xenopsin on PS-HDODA and PS-TTEGDA supports (Glu-Gly-Lys-.Arg-Pro-Trp-Ile-Leu-OH)
4.6 Synthesis of Neurotensin Based on Fmoc-Chemistry
4.6.1 Preparation of 4- (4-hydroxymethyl-3-methoxyphenoxy) butyl amidomethyl resin
4.6.2 Estimation of hydroxyl group in HMPB resin
4.6.3 Preparation of Fmoc-Leu -O-CH2-C6H3 (OCH3) -O- (CH2) s NHCO--CH2-C6H4-resin
4.6.4 Esterification of Fmoc-amino acid to polymer support using MSNT
4.6.5 Estimation of amino group in the resin
4.6.6 Synthesis of neurotensin on GDMA-PMMA support by Fmoc chemistry (Glu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-ProTyr-Ile-Leu-OH)
4.6.7 Synthesis of NEUROMEDIN on GDMA-PMMA support by Fmoc chemistry (Tyr-Ile- Lys- Ile-Pro-Leu-OH)
4.6.8 Synthesis of Xenopsin GDMA-PMMA support by Fmoc chemistry (Glu-Gly- Lys Arg-Pro-Trp-Ile-Leu-OH)
References
5. Synthetic Peptide as a Tool for Bioassey
5 Introduction
5.1 Methodology and interpretation
5.1.1 Isolation of native neurotensin from controlled and diabetic: rats
5.1.2 Purification of isolated lyophilized crude native neurotensin
5.1.3 Concentration of neurotensin isolated from brainstem of controlled and diabetic rats.
5.1.4 Concentration of neurotensin isolated from cerebral cortex of controlled and diabetic rats
5.1.5 Concentration of neurotensin isolated from hypothalamus of controlled and diabetic rats
References
6. Conclusion