HOME
Search & Results
Full Text
Thesis Details
Page:
177
Full Screen
Title
DEDICATION
CERTIFICATE
DECLARATION
ACKNOWLEDGEMENT
CONTENTS
1 Introduction
1.1 Types of antennas
1.1.1 Wire antennas
1.1.2 Aperture antennas
1.1.2.1 Reflector antennas
1.1.2.2 Plane reflectors
1.1.2.3 Corner reflectors
1.1.2.4 Curved reflectors
1.1.3 Leaky wave antennas
1.1.4 Transmission type antennas
1.1.5 Antenna arrays
1.1.6 Planar antennas
1.2 Outline of the present work
1.2.1 Chapter organisation
1.2.1.1 Chapter 2
1.2.1.2 Chapter 3
1.2.1.3 Chapter 4
1.2.1.4 Chapter 5
1.2.1.5 Chapter 6
2 Review of the past work in the field
3 Methodology
3.1 Experimental facilities
3.1.1 HP83508 Sweep oscillator
3.1.1.1 Start/stop mode
3.1.1.2 CF/ΔF mode
3.1.1.3 CW mode
3.1.2 HP87438 reflection transmission test unit
3.1.3 HP8411A harmonic frequency converter
3.1.4 HP8410C/8510B network analyser with display unit
3.1.5 Anechoic Chamber
3.1.6 Antenna positioner and controlIer
3.1.7 The X-Y recorder
3.2 Fabrication of antennas under test
3.2.1 The newly devoloped antennas
3.2.1.1 The ETCR Antenna
3.2.1.2 The PSACR Antenna
3.3 The antenna holder and feeding facility
3.4 Experimental set-up
3.4.1 C-Band antenna
3.5 Method of measurements
3.5.1 Antenna impedance and VSWR
3.5.2 Radiation pattern
3.5.3 Direction gain
3.6 Motivation for the present work
4 Experimental results
4.1 Introduction
4.2 The ECTR antenna
4.2.1 Dependence of βopt on width of the sub reflector and primary corner angle
4.2.2 Studies on the radiation patterns of the ETCR antenna
4.2.2.1 H-plane radiation patterns
4.2.2.2 Effect of variation of width of sub reflector on axial gain and half power beam width
4.2.2.3 Sidelobe Levels
4.2.3 VSWR and impedance
4.3 The periodic strip attached corner reflector (PSACR) antenna
4.3.1 Factors affecting optimumn β
4.3.2 Effect of strip parameters on the axial gain
4.3.2.1 Number of strips
4.3.2.2 Strip width
4.3.2.3 Strip periodicity
4.3.2.4 Strip Length
4.3.3 Effect of variation of width of the primary reflector on axial gain
4.3.4 Studies on the radiation patterns of the PSACR Antenna
4.3.4.1 Copolar radiation pattern
4.3.4.1.1 H-plane radiation pattern
4.3.4.1.1.1 Single Lobe radiation patterns
Maximum sidelobe Levels
The HPBW
The twin lobe radiation pattern
4.3.4.1.2 E-plane radiation pattern
4.3.4.2 The cross-polar levels
4.3.5 Study of the impedance parameters
4.3.6 The C-band design
4.4 Comparison between PSACR and ETCR
4.5 Conclusion
5 Theoretical analysis
5.1 Introduction
5.2 Method of analysis
5.2.1 Geometrical optics field analysis (Image theoy)
5.2.2 Diffraction field analysis - GTD approach
5.2.2.1 Geometrical theory of diffraction for edges
5.2.2.2 Diffraction by a slit
5.3 Application of the new antennas
5.3.1 The ETCR
5.3.1.1 Case 1
5.3.1.2 Case 2
5.3.1.3 Case 3
5.3.2 The PSACR
The GO field
The diffraction field
5.3.2.1 Case 1.180 PSACR (axial single lobe)
5.3.2.2 Case 2.180 PASCR (Twin lobe radiation pattern)
5.3.2.3 Case 3.120˚ PSACR
5.3.2.4 Case 4. 90˚ PSACR
6 Conclusions
6.1 Introduction
6.2 Highlights of the results
6.2.1 Experimental observations
(a) ETCR
(b) PSACR
6.2.2 Theoretical conclusions
6.2.3 Shortcomings
6.3 Importance of the study
6.4 Possible applications
6.5 scope for further work
References
List of publications